Кто изобрёл первую электрическую лампочку? Кто изобрел лампочку первым? Лодыгин? Эдисон? Кто первым придумал электрическую лампочку

И Яблочков, и Лодыгин были «временными» эмигрантами. Они не собирались покидать родину навсегда и, достигнув успеха в Европе и Америке, вернулись обратно. Просто Россия во все времена «стопорила», как сегодня модно говорить, инновационные разработки, и порой проще было поехать во Францию или США и там «продвинуть» свое изобретение, а потом триумфально вернуться домой известным и востребованным специалистом. Это можно назвать технической эмиграцией — не из-за нищеты или нелюбви к родным разбитым дорогам, а именно с целью оттолкнуться от заграницы, чтобы заинтересовать собой и родину, и мир.

Судьбы этих двух талантливых людей очень похожи. Оба родились осенью 1847 года, служили в армии на инженерных должностях и почти одновременно уволились в близких чинах (Яблочков — поручика, Лодыгин — подпоручика). Оба в середине 1870-х сделали важнейшие изобретения в области освещения, развивали их в основном за границей, во Франции и США. Правда, позже их судьбы разошлись.

Итак, свечи и лампы.

НИТИ НАКАЛИВАНИЯ

Первым делом стоит заметить, что Александр Николаевич Лодыгин не изобрел лампу накаливания. Как не сделал этого и Томас Эдисон, которому Лодыгин в итоге продал ряд своих патентов. Формально пионером использования для освещения раскаленной спирали стоит считать шотландского изобретателя Джеймса Боумана Линдси. В 1835 году в городе Данди он провел публичную демонстрацию освещения пространства вокруг себя с помощью раскаленной проволоки. Он показывал, что такой свет позволяет читать книги без применения привычных свечей. Однако Линдси был человеком множества увлечений и светом больше не занимался — это был лишь один из череды его «фокусов».

А первую лампу со стеклянной колбой в 1838 году запатентовал бельгийский фотограф Марселлен Жобар. Именно он ввел ряд современных принципов лампы накаливания — откачал из колбы воздух, создав там вакуум, применил угольную нить и так далее. После Жобара было еще много электротехников, внесших свой вклад в развитие лампы накаливания, — Уоррен де ла Рю, Фредерик Маллинс (де Молейнс), Жан Эжен Робер-Уден, Джон Веллингтон Старр и другие. Робер-Уден, к слову, вообще был иллюзионистом, а не ученым — лампу он спроектировал и запатентовал в качестве одного из элементов своих технических трюков. Так что к появлению на «ламповой арене» Лодыгина все уже было готово.

Родился Александр Николаевич в Тамбовской губернии в семье знатной, но небогатой, поступил, как многие дворянские отпрыски того времени, в кадетский корпус (сперва в подготовительные классы в Тамбове, затем — в основное подразделение в Воронеже), служил в 71-м Белевском полку, учился в Московском юнкерском пехотном училище (ныне — Алексеевское), а в 1870-м ушел в отставку, потому что душа его к армии не лежала.

В училище он готовился по инженерной специальности, и это сыграло не последнюю роль в его увлечении электротехникой. После 1870-го Лодыгин плотно занялся работой над совершенствованием лампы накаливания, а заодно вольнослушателем посещал Петербургский университет. В 1872 году он подал заявку на изобретение под названием «Способ и аппараты электрического освещения» и двумя годами позже получил привилегию. Впоследствии он запатентовал свое изобретение в других странах.

Что же изобрел Лодыгин?

Лампочку накаливания с угольным стержнем. Вы скажете — так ведь еще Жобар использовал подобную систему! Да, безусловно. Но Лодыгин, во-первых, разработал намного более совершенную конфигурацию, а во-вторых, догадался, что вакуум — не идеальная среда и увеличить КПД и срок службы можно, наполнив колбу инертными газами, как делается в подобных лампах сегодня. Именно в этом был прорыв мирового значения.

Он основал компанию «Русское товарищество электрического освещения Лодыгин и К°", был успешен, работал над множеством изобретений, в том числе, кстати, над водолазным оборудованием, но в 1884-м был вынужден покинуть Россию по политическим причинам. Да, из-за них уезжали во все времена. Дело было в том, что смерть Александра II от бомбы Гриневицкого привела к массовым облавам и репрессиям в среде сочувствующих революционерам. В основном это была творческая и техническая интеллигенция — то есть общество, в котором вращался Лодыгин. Уехал он не от обвинений в каких-либо противоправных действиях, а скорее от греха подальше.

До того он уже работал в Париже, а теперь перебрался в столицу Франции жить. Правда, созданная им за рубежом компания довольно быстро разорилась (бизнесменом Лодыгин был очень сомнительным), и в 1888 году он переехал в США, где устроился на работу в Westinghouse Electric («Вестингауз электрик»). Джордж Вестингауз привлекал к своим разработкам ведущих инженеров со всего мира, порой перекупая их у конкурентов.

В американских патентах Лодыгин закрепил за собой первенство в разработке ламп с нитями накаливания из молибдена, платины, иридия, вольфрама, осмия и палладия (не считая многочисленных изобретений в других сферах, в частности патента на новую систему электрических печей сопротивления). Вольфрамовые нити используются в лампочках и сегодня — по сути, Лодыгин в конце 1890-х придал лампе накаливания окончательный вид. Триумф ламп Лодыгина пришелся на 1893 год, когда компания Вестингауза выиграла тендер на электрификацию Всемирной выставки в Чикаго. По иронии судьбы позже, перед отъездом на родину, патенты, полученные в США, Лодыгин продал вовсе не Вестингаузу, а General Electric Томаса Эдисона.

В 1895 году он снова переехал в Париж и там женился на Алме Шмидт, дочери немецкого эмигранта, с которой познакомился в Питтсбурге. А еще спустя 12 лет Лодыгин с женой и двумя дочерьми вернулся в Россию — всемирно известным изобретателем и электротехником. У него не было проблем ни с работой (он преподавал в Электротехническом институте, ныне СПбГЭТУ «ЛЭТИ»), ни с продвижением своих идей. Он занимался общественно-политической деятельностью, работал над электрификацией железных дорог, а в 1917-м с приходом новой власти снова уехал в США, где его приняли весьма радушно.

Пожалуй, Лодыгин — это настоящий человек мира. Живя и работая в России, Франции и США, он везде добивался своего, везде получал патенты и внедрял свои разработки в жизнь. Когда в 1923 году он умер в Бруклине, об этом написали даже газеты РСФСР.

Именно Лодыгина можно назвать изобретателем современной лампочки в большей мере, нежели любого из его исторических конкурентов. Но вот основоположником уличного освещения был вовсе не он, а другой великий русский электротехник — Павел Яблочков, не веривший в перспективы ламп накаливания. Он шел своим путем.

СВЕЧА БЕЗ ОГНЯ

Как отмечалось выше, жизненные пути у двух изобретателей были сперва схожи. По сути, можно просто скопировать часть биографии Лодыгина в этот подраздел, заменив имена и названия учебных заведений. Павел Николаевич Яблочков тоже родился в семье мелкопоместного дворянина, учился в Саратовской мужской гимназии, затем — в Николаевском инженерном училище, откуда вышел в чине инженера-подпоручика и отправился служить в 5-й саперный батальон Киевской крепости. Служил он, правда, недолго и менее чем через год вышел в отставку по здоровью. Другое дело, что на гражданском поприще толковой работы не нашлось, и еще через два года, в 1869-м, Яблочков вернулся в армейские ряды и для повышения квалификации был откомандирован в Техническое гальваническое заведение в Кронштадте (ныне — Офицерская электротехническая школа). Именно там он всерьез заинтересовался электротехникой — заведение готовило военных специалистов для всех связанных с электричеством работ в армии: телеграфа, систем подрыва мин и так далее.

В 1872 году 25-летний Яблочков окончательно ушел в отставку и начал работу над собственным проектом. Он справедливо считал лампы накаливания бесперспективными: действительно, на тот момент они были тусклыми, энергозатратными и не слишком долговечными. Куда больше Яблочкова интересовала технология дуговых ламп, которую в самом начале XIX века независимо друг от друга стали разрабатывать двое ученых — русский Василий Петров и англичанин Гемфри Дэви. Оба они в одном и том же 1802 году (хотя относительно даты «презентации» Дэви есть разночтения) представили перед высшими научными организациями своих стран — Королевским институтом и Петербургской академией наук — эффект свечения дуги, проходящей между двух электродов. На тот момент практического применения этому явлению не было, но уже в 1830-х начали появляться первые дуговые лампы с угольным электродом. Наиболее известным инженером, разрабатывавшим такие системы, был англичанин Уильям Эдвардс Стейт, получивший ряд патентов на угольные лампы в 1834 — 1836 годах и, что главное, разработавший важнейший узел подобного устройства — регулятор расстояния между электродами. В этом крылась основная проблема угольной лампы: по мере того как электроды выгорали, расстояние между ними увеличивалось, и их нужно было сдвигать, чтобы дуга не погасла. Патенты Стейта использовались как базовые множеством электротехников по всему миру, а его лампы освещали ряд павильонов на Всемирной выставке 1851 года.

Яблочков же задался целью исправить основной недостаток дуговой лампы — необходимость обслуживания. Около каждой лампы должен был постоянно присутствовать человек, подкручивающий регулятор. Это сводило на нет преимущества и яркого света, и относительной дешевизны изготовления.

В 1875 году Яблочков, так и не найдя применения своим умениям в России, уехал в Париж, где устроился инженером в лабораторию знаменитого физика Луи-Франсуа Бреге (его дед основал часовую марку Breguet) и сдружился с его сыном Антуаном. Там в 1876 году Яблочков получил первый патент на дуговую лампу без регулятора. Суть изобретения состояла в том, что длинные электроды располагались не концами друг к другу, а рядом, параллельно. Они были разделены слоем каолина — материала инертного и не позволяющего дуге возникнуть по всей длине электродов. Дуга появлялась только на их концах. По мере выгорания видимой части электродов каолин плавился и свет спускался вниз по электродам. Горела такая лампа не более двух-трех часов — но зато невероятно ярко.

«Свечи Яблочкова», как прозвали новинку журналисты, снискали сумасшедший успех. После демонстрации ламп на лондонской выставке сразу несколько компаний выкупили у Яблочкова патент и организовали массовое производство. В 1877 году первые «свечи» загорелись на улицах Лос-Анджелеса (американцы купили партию сразу после публичных демонстраций в Лондоне, еще до серийного производства). 30 мая 1878 года первые «свечи» зажглись в Париже — около Оперы и на площади Звезды. Впоследствии лампы Яблочкова освещали улицы Лондона и ряда американских городов.

Как же так, спросите вы, они же горели всего два часа! Да, но это было сравнимо со временем «работы» обычной свечи, и при этом дуговые лампы были невероятно яркими и более надежными. И да, фонарщиков требовалось много — однако не больше, чем для обслуживания повсеместно использовавшихся газовых фонарей.

Но подступали лампы накаливания: в 1879 году британец Джозеф Суон (впоследствии его компания сольется с компанией Эдисона и станет крупнейшим осветительным конгломератом в мире) поставил около своего дома первый в истории фонарь уличного освещения с лампой накаливания. За считаные годы эдисоновские лампы сравнялись по яркости со «свечами Яблочкова», имея при том значительно более низкую стоимость и время работы 1000 часов и более. Короткая эпоха дуговых ламп завершилась.

В целом это было логично: безумный, невероятный взлет «русского света», как называли «свечи Яблочкова» в США и Европе, не мог продолжаться долго. Падение стало еще более стремительным — уже к середине 1880-х годов не осталось ни одного завода, который производил бы «свечи». Впрочем, Яблочков работал над различными электросистемами и пытался поддерживать свою былую славу, ездил на конгрессы электротехников, выступал с лекциями, в том числе в России.

Окончательно он вернулся в 1892 году, причем потратив сбережения на выкуп собственных же патентов у европейских правообладателей. В Европе его идеи уже были никому не нужны, а на родине он надеялся найти поддержку и интерес. Но не сложилось: к тому времени из-за многолетних экспериментов с вредными веществами, в частности с хлором, здоровье Павла Николаевича начало стремительно ухудшаться. Подводило сердце, подводили легкие, он перенес два инсульта и скончался 19 (31) марта 1894 го- да в Саратове, где жил последний год, разрабатывая схему электрического освещения города. Ему было 47 лет.

Возможно, если бы Яблочков дожил до революции, он повторил бы судьбу Лодыгина и уехал бы во второй раз — теперь уже навсегда.

Сегодня дуговые лампы получили новую жизнь — по этому принципу работает ксеноновое освещение во вспышках, автомобильных фарах, прожекторах. Но значительно более важным достижением Яблочкова является то, что он первым доказал: электрическое освещение общественных пространств и даже целых городов — возможно.

Сложно представить себе, как раньше люди существовали без электрической лампы. Когда по техническим причинам отключается электричество, все вокруг замирают в ожидании. Появляется такое ощущение, что замедляется пульс планеты. Попробуем проследить эволюцию этого прибора, без которого сейчас просто не обойтись.

Немного истории

Кто изобрел первую лампочку накаливания? Ответить конкретно и без сомнений на этот вопрос очень трудно. Все это потому, что не один конкретный человек принимал участие в изобретении. В разное время и на разных этапах развития электрической лампы, многие люди вложили свой труд и знания, чтобы она получилась такой, какую мы ее видим и знаем сейчас.

На первый взгляд лампа может показаться простой, но на самом деле это довольно сложная технология. Еще в древнем Египте и у народа Средиземноморья для освещения жилищ использовались масла , которые заливались в специальные сосуды с фитилями из хлопчатобумажных ниток. На берегу Каспийского моря вместо масел применяли нефть. Уже в то время люди придумывали различные технологии, помогающие видеть в темное время суток.

Совершенно точно известно, что лампа накаливания была изобретена в XIX столетии. На протяжении всего этого времени многие люди пытались изобретать и изменять к лучшему «электрическую свечу».

В изобретении электрической лампочки принимало активное участие несколько человек, а именно:

  • Яблочков Павел Николаевич;
  • Жерар;
  • Деларю;
  • Генрих Гёбель;
  • Лодыгин Александр Николаевич;
  • Томас Эдисон;
  • Вильям Девид Кулидж.

Этапы развития изобретения

Первую лампу накаливания, которая очень напоминала настоящую, изобрел Яблочков Павел Николаевич. Всю свою жизнь он посвятил электротехнике. Изобретать новшества в этой сфере и внедрять все это в жизнь, было основным его занятием. Первая электрическая свеча – это тоже его изобретение. Благодаря его свечам появилась возможность освещать ночные города . Первые электрические свечи появились на улицах Санкт-Петербурга. Стоила такая свеча недорого и хватало ее на полтора часа. После сгорания ее нужно было заменить новой. Ответственной работой занимались городские дворники. Позже, чтобы облегчить их труд были изобретены фонари с автоматической сменой свечи.

Бельгийцу Жерару в 1838 году удалось изобрести электрическую лампу, в которой источником света служил угольный стержень, к нему подводился электрический ток.

Через два года после этого, житель Англии с французскими корнями Деларю, придумал вместо угля использовать для накаливания платиновую нить. Эти два варианта считались огромным толчком в изобретении электрической лампы накаливания, но на практике именно в то время их применение сопровождалось многими неудобствами. Угольная лампа накаливания была неудобна и быстро сгорала , а электрическая лампа с использованием платиновой нитки отличалась своей дороговизной. Поэтому многие продолжали искать другие альтернативные варианты, изобретали и внедряли в жизнь все новые и новые источники света. Всем хотелось, чтобы лампа накаливания горела как можно дольше, но многих постигали неудачи в работе над изобретением.

В 1854 году немецкому ученому Генриху Гёбелю приходит идея, что лампа накаливания будет дольше гореть в вакуумном пространстве. Время горения электрической лампы удалось продлить на несколько часов. Еще несколько лет учеными было потрачено на то, чтобы обеспечить в лампе полный вакуум.

И только в 1874 году нашему соотечественнику Лодыгину Александру Николаевичу удалось придумать и создать идеальную электрическую лампу, которая горела постоянно. Его детище прошло все тесты. Именно тогда была изобретена настоящая современная лампа. Лодыгина, поэтому и считают первооткрывателем, поскольку его лампочка могла уже гореть почти на протяжении получаса . После выкачивания из нее воздуха она продолжала снова работать. В 1983 году впервые улицы Петербурга были освещены лампочками Лодыгина. Александр Николаевич происходил из знатного российского рода, несмотря на бедность своей семьи. Его предок был общим предком с Романовыми – Андрей Кобыла.

В Америке узнали об этих опытах и изобретениях Александра Николаевича, благодаря морскому офицеру Н. Хотинскому. Российская империя заказывала в Америке крейсеры. Во время одного из визитов морского офицера в Америку он посетил лабораторию Томаса Эдисона и передал ему из рук в руки изобретения Яблочкова и Лодыгина. Томас Эдисон стал пытаться усовершенствовать уже, казалось бы, совершенную лампу накаливания. В 1879 году ему удалось это сделать. Вместо угольного стержня Томас попытался применить буковую нить и достиг желаемого результата. Лампочка стала гореть намного дольше.

К этому результату Томас шел не один день. Более 6000 попыток с угольными нитками ему пришлось преодолеть. Он всегда добивался того, чего хотел и нашел искомое. Его электрические лампочки могли гореть по сто часов. В ноябре Томас запатентовал якобы свое изобретение, что возмутило Яблочкова, он выступил с обвинением в адрес американца.

Это изобретение было не единственной заслугой Томаса Эдисона. Он также создал бытовой поворотный выключатель, без которого уже трудно себе представить процесс работы электрической лампочки, цоколь и патрон. Его имя связано с изобретением телефонного передатчика, мимеографа и фонографа. Он первый открыл масштабное производство лампочек, что помогло многим людям ощутить всю прелесть электричества. На протяжении последующих десяти лет многие ученые пытались усовершенствовать электрическую лампочку , но ее изобретателем считался Томас Эдисон.

Александр Николаевич Лодыгин продолжал, независимо от своего коллеги и конкурента из Америки, создавать и модернизировать свое детище. Он искал универсальную и долгоиграющую нить накаливания. Ему удалось достичь неплохих успехов с использованием вольфрамовой и молибденовой нитями накаливания. Производить лампы из этих материалов было дорого по тем временам, поэтому изобретение оказалось неэффективным и затратным делом. В 1910 году американскому исследователю Вильяму Девиду Кулиджу удалось упростить создание вольфрамовой нити , это стало дешевле и дало возможность массово выпускать недорогие электрические лампочки накаливания.

Да будет свет!

В итоге получилась современная лампочка накаливания, которая состоит из нескольких важных элементов.

  1. Колба.
  2. Полости колбы (вакуумная или наполненная газом).
  3. Тело накала.
  4. Электроды (токовый ввод).
  5. Крючки для поддержания тела накала.
  6. Ножки лампы.
  7. Внешнее звено токоотвода, предохранителя.
  8. Корпус цоколя.
  9. Изолятор цоколя (стекла).
  10. Контакт донышка цоколя.

Заключение

Таким образом, к созданию «лампочки Ильича» сам Ленин не имел ни малейшего отношения. Над этим чудесным изобретением, которому наконец-то удалось рассеять тьму, почти одновременно трудилось несколько человек. Каждый из них внес свою немалую лепту в создание настоящей электрической лампочки. Если отвечать на вопрос, кто изобрел лампу, стоит обязательно вспомнить всех этих людей. Своим кропотливым трудом они помогли перенести изобретение из лабораторий в наши жилища и в корне изменить жизнь людей к лучшему. Все вместе и каждый в отдельности достоин нашего внимания, уважения и благодарности.

Яблочков Павел Николаевич (1847-1894) - российский изобретатель, военный инженер и предприниматель. Наибольшую известность получил благодаря созданию дуговой лампы, сигнального термометра и других изобретений в сфере электротехники.

Павел Яблочков родился 2(14) сентября 1847 года в селе Жадовка Сердобского уезда Саратовской губернии. Его отец Николай Павлович был представителем старинной династии, но к моменту рождения сына обеднел. В молодости он проявил себя в морской службе, однако по причине болезни был уволен. Впоследствии он стал работать мировым посредником и мировым судьей. Мать изобретателя Елизавета Петровна занималась домашним хозяйством и, обладая властным характером, держала в руках всю свою большую семью (после Павла она родила еще четверых детей).

Родители обеспечили мальчику начальное образование прямо в домашних условиях, где его обучили азам грамоты, письма и счета, а также французскому языку. Но настоящей страстью Павла стало конструирование различных приборов. Будучи подростком, он создал устройство, помогавшее производить передел земли, а также далекий аналог современного спидометра. Прибор устанавливался на колесо экипажа и отсчитывал пройденное расстояние.

Годы учебы

По настоянию родителей в 1859 году Павел, благодаря успешно пройденным испытаниям, поступил сразу во второй класс Саратовской гимназии. Но из-за финансовых проблем через три года отец вынужден был забрать сына. По другой версии причиной прерывания учебы стали невыносимые условия в гимназии, где применялись телесные наказания. Некоторое время Яблочков пробыл в родительском доме, а потом сдал экзамены и поступил в Николаевское инженерное училище, расположенное в столице. Это было передовое учебное заведение своего времени, в котором преподавали именитые ученые. Во время подготовки к поступлению Павел посещал подготовительные курсы, где на него большое влияние оказал военный инженер Цезарь Антонович Кюи.

Цезарь Антонович Кюи — преподаватель Николаевской инженерной академии

Наставниками Павла Николаевича были известные профессора Фёдор Фёдорович Ласовский, Герман Егорович Паукер, Иван Алексеевич Вышеградский. Они дали ему прекрасную базу знаний по электричеству, магнетизму, математике, фортификации, артиллерии, черчению, военной тактике и многим другим дисциплинам. Военные методы воспитания училища положительно повлияли на изобретателя - он приобрел военную выправку и физически окреп.

Служба в армии

В 1866 году Яблочков оканчивает училище, получает чин инженера-поручика и определяется в пятый саперный батальон, расположенный в Киеве. Служба не вызывала особого энтузиазма у Павла - он был полон творческих идей, которые воплотить в жизнь в казарменных условиях не представлялось возможным. В 1867 году ученый подает рапорт об увольнении по причине болезни. Это позволило ему полностью окунуться в мир электротехники и результат не заставил себя долго ждать.

Изобретатель разработал генератор с самовозбуждением, который положил начало множеству исследований по электротехнике. Однако прочных знаний в электромагнетизме не было и это ограничивало его возможности. В 1869 году он восстанавливается на службе в чине подпоручика, что дало право поступить в петербургские Гальванические классы, где обучали на военных электротехников.

Пребывание в этом учебном заведении пошло на пользу и Яблочков всерьез познакомился с самыми современными достижениями в области электричества. В течение восьми месяцев Павел Николаевич прослушал курс лекций, который сочетался с активной практикой. Руководил обучением профессор Фёдор Фомич Петрушевский. В завершение каждый слушатель курсов прошел практику в Кронштадте, где активно работали с гальваническими минами.

Согласно действующим правилам выпускникам Гальванических классов необходимо было три года отслужить и Яблочков отправляется в знакомый ему пятый саперный батальон в качестве начальника гальванической службы. Отслужив весь положенный срок, изобретатель навсегда увольняется с военной службы службы и переезжает в Москву.

Новая жизнь

В Златоглавой Павел Николаевич устроился начальником телеграфа Московско-Курской железной дороги. Одним из аргументов, склонивших его к поступлению на работу, стала хорошая ремонтная база. Он активно продолжал обучение, впитывая ценный опыт местных электриков. Важную роль в становление личности изобретателя сыграло знакомство с инженером-электротехником , который имел огромный талант изобретателя. Таким образом постепенно формировался индивидуальный облик ученого, который не оставлял попыток создавать что-то новое.

В это время он привел в рабочее состояние неисправный электродвигатель Труве (название произошло от фамилии французского изобретателя Густава Пиера Труве), разработал проект по оптимизации машины Грамма, а также создал горелку для гремучего газа и устройство для фиксации изменений температуры в пассажирских вагонах. Но творить получалось непостоянно, так как основная работа отнимала много времени.

Тем не менее Яблочкову удалось глубоко вникнуть в принцип действия дуговых ламп, он проводил множество экспериментов направленных на их усовершенствование. В 1873 году ученый начал работу в мастерской физических приборов и год спустя первым в мире создал конструкцию электрического прожекторного освещения железнодорожных путей на локомотиве. В 1875 году ученый уезжает в США на всемирную выставку в Филадельфию, где хотел представить свои изобретения. Но финансовые дела пошли неважно и Павел Николаевич вместо Соединенных Штатов приехал в Париж.

Парижский этап

Во французской столице он устраивается на работу в мастерские академика Луи Бреге, с телеграфным аппаратом которого был хорошо знаком еще по работе в Москве. Кроме того, он владел крупным предприятием, выпускавшим различные электроприборы. Русский изобретатель показал Бреге свой электромагнит и француз сразу по достоинству оценил его талант.

Павел Николаевич без промедления приступил к работе на заводе, параллельно проводя эксперименты в своей маленькой комнатке университетского городка. В скором времени он завершил работу над несколькими изобретениями и успел их запатентовать.

В марте 1876 года Яблочков получил патент на самое известное изобретение - знаменитую электрическую свечу (дуговую лампу без регулятора). Ученому из России удалось создать источник света, отвечавший запросам массового потребителя. Это был экономичный, простой и удобный в использовании прибор, сделавший освещение доступным для всех. По сравнению с угольной лампой устройство Яблочкова содержало угольные стержни (электроды), разделенные каолиновой прокладкой.

Свеча Яблочкова

Подробно о свече Яблочкова рассказано в видео канала «Чип и Дип».

Александр Пушной демонстрирует принцип действия свечи Яблочкова в передаче «Галилео».

Успех был ошеломляющим и об изобретателе, подарившем миру «русский свет», заговорили всерьез. Вскоре Павел Николаевич поехал как представитель компании Бреге на выставку физических приборов в Лондон. Здесь его ждал серьезный успех, ведь о судьбе электрической свечи узнали российские научные круги. По возвращении в Париж ученого ждали многочисленные коммерсанты, быстро смекнувшие какие возможности для получения прибыли открывают творения русского ученого.

По протекции Л. Бреге продвижением дуговой лампы занялся французский изобретатель Огюст Денейруз, который организовал акционерное общество. Предприятие занималось вопросами изучения электрического освещения, а Яблочкову было доверено обеспечивать научно-техническое руководство. В его компетенцию входило наблюдение за производством и работы по усовершенствованию устройства. Компания с уставным капиталом в 7 млн франков фактически монополизировала производство «русского света» в масштабах всей планеты.

Ближайшие два года выдались очень плодотворными. Яблочков занимался установкой освещения улиц и публичных зданий Парижа и Лондона. В частности, благодаря ему получил подсветку мост через Темзу, театр Шатле, Лондонский театр и другие объекты. Отсюда, из Западной Европы электричество стало распространяться по всему свету. И не случайно, так как русскому электротехнику удалось оптимизировать свечу до возможности применения в больших осветительных приборах. «Русский свет» освещал американский Сан-Франциско, индийский Мадрас и дворец короля Камбоджи.

Свечи Яблочкова установленные на Набережной Виктории (1878 год)

Вместе с этим он создал каолиновую лампу, разработал трансформатор для разделения электрического тока. Парижская выставка 1878 года стала подлинным триумфом Яблочкова — в его павильоне всегда было множество посетителей, которым демонстрировалось множество познавательных экспериментов.

Возвращение в Россию

Мечты о родине не покидали ученого все время пребывания на чужбине. Здесь он получил всемирное признание, восстановил коммерческую репутацию, выплатил накопившиеся долги. Перед поездкой в Россию Павел Николаевич выкупил лицензию на право использования электроосвещения в России. Руководство компании потребовало весь пакет акций стоимостью 1 млн франков — изобретатель согласился и получил полный карт-бланш.

Научные круги в России тепло приветствовали возвращение ученого, чего не скажешь о царском правительстве, которое сделало внушение изобретателю за поддержку политических эмигрантов за рубежом. Но самое неприятное было в другом - отечественные предприниматели практически не заинтересовались электрической свечой. Пришлось дело организовывать самому.

В 1879 году было организовано товарищество, занимавшееся созданием электромашин и систем электрического освещения. Вместе с Яблочковым работой занимались такие светила в сфере электротехники, как Лодыгин и Чиколев. С коммерческой точки зрения, это был вполне успешный проект, но не приносивший никакого морального удовлетворения. Умом Павел Николаевич понимал сколь мало возможностей есть в России для реализации имевшихся планов. Кроме того, в 1879 году пришла не самая радостная новость из-за океана - усовершенствовал лампу накаливания и нашел ей массовое применение. Это стало последним доводом для переезда в Париж.

Новый парижский этап

В 1880 году Яблочков возвращается во французскую столицу, где сразу приступил к подготовке участия во Всемирной электротехнической выставке. Здесь его изобретения вновь получили высокую оценку, но были оттенены лампой накаливания Эдисона. Это дало понять, что триумф дуговой лампы уже позади и перспективы развития этой технологии весьма туманны. Павел Николаевич отнесся к такому повороту событий спокойно и отказался от дальнейшей разработки источников света. Теперь его интересовали электрохимические генераторы тока.

Изобретатель будет разрываться между Францией и Россией на протяжении 12 лет. Это было трудно время, ведь ни в одной стране он не чувствовал себя своим. Отечественная правящая и финансовая элита воспринимала его как отработанный материал, а за рубежом он стал чужим, ведь пакет акций больше ученому не принадлежал. Яблочков продолжал работы над электродвигателями и генераторами, изучал вопросы передачи переменного тока. Но все разработки осуществлялись в крохотной квартирке, где не было никаких условий для научных изысканий. В ходе одного из экспериментов взорвавшиеся газы чуть не убили ученого. В 90-х годах он запатентовал еще несколько изобретений, но ни одно из них не позволило получить достойную прибыль.

Здоровье изобретателя оставляло желать лучшего. Кроме проблем с сердцем, добавилась болезнь легких, слизистая оболочка которых была повреждена хлором во время эксперимента. Яблочкова преследовала хроническая бедность, зато электротехническая компания всерьез разбогатела на его изобретениях. Сам изобретатель не раз отмечал, что никогда не стремился стать богатым, но всегда рассчитывал на полноценное обустройство своей научной лаборатории.

В 1889 году Павел Николаевич с головой окунулся в подготовку к очередной Международной выставке, где он возглавлял русский отдел. Он помогал прибывшим в Париж инженерам из России и сопровождал их на всех мероприятиях. Ослабленное здоровье изобретателя не выдержало такого напряжения и он был частично парализован.

Возвращение на родину состоялось в самом конце 1892 года. Петербург встретил Яблочкова неприветливо и холодно, рядом с ним оказались только близкие друзья и семья. Многие из тех, кому он дал дорогу в жизнь отвернулись, жить было особо не на что. Вместе с женой и сыном ученый принял решение вернуться на малую родину, где скончался 19 (31) марта 1894 года.

Личная жизнь

С первой женой школьной учительницей Любовью Никитиной изобретатель познакомился в Киеве. Они поженились в 1871 году, но семейная жизнь была относительно недолгой, так как супруга скончалась в 38 лет от туберкулеза. От брака осталось четверо детей, трое из которых умерли в раннем возрасте. Вторая жена Мария Альбова родила Павлу Николаевичу сына Платона, который впоследствии стал инженером.

  • Первое испытание системы освещения Павла Николаевича было проведено в казармах Кронштадтского учебного экипажа 11 октября 1878 года.
  • Каждая свеча Яблочкова, впущенная на предприятии Бреге, горела всего 1,5 часа и стоила 20 копеек.
  • В 1876 году Павел Николаевич был избран членом французского физического общества.
  • В России наибольшие интерес к дуговой лампе проявили на флоте, где было установлено свыше 500 фонарей.
  • В 2012 году в Пензе появился технопарк, названный именем великого изобретателя, который специализируется на материаловедении и информационных технологиях.

«Яблочков технопарк» г. Пенза

Видео

Фильм «Великие изобретатели. Русский свет Яблочкова». ООО «ГринГа» по заказу ЗАО «Первый ТВЧ», 2014 г.

Свеча Яблочкова - один из вариантов электрической угольной дуговой лампы, изобретённый в 1876 году Павлом Николаевичем Яблочковым .

История создания и применения

Первые опыты с электрическим освещением Павел Николаевич Яблочков начал проводить ещё в своей московской мастерской в 1872 и 1873 годах. Учёный работал тогда с регуляторами разных систем, а затем с вышедшей в то время угольной лампой А. Н. Лодыгина. Яблочков брал тонкие угольки и помещал их между двумя проводниками. Для того чтобы уголь не сгорал, Яблочков обматывал его волокнами горного льна. Идея была в том, чтобы уголь, накаливаясь не сгорал, а накаливал только окружающий его горный лён. Хотя эти опыты были неудачными, они подсказали Яблочкову идею применения в электрическом освещении глины и других подобных материалов.

В 1875 году во время одного из многочисленных опытов по электролизу растворов поваренной соли параллельно расположенные угли, погружённые в электролитическую ванну, случайно, коснулись друг друга. Тотчас между ними вспыхнула электрическая дуга, на короткий миг осветившая ярким светом стены лаборатории. Это натолкнуло Павла Николаевича на мысль о создании более совершенного устройства дуговой лампы без регулятора межэлектродного расстояния - будущей «свечи Яблочкова». В октябре того же года Яблочков уехал за границу. Оказавшись в Париже он устроился на работу в мастерские физических приборов профессора Антуана Бреге. Однако его не покидала мысль о создании дуговой лампы без регулятора.

К началу весны 1876 года Яблочков завершил разработку конструкции электрической свечи и 23 марта того же года получил на неё французский патент за № 112024, содержащий краткое описание свечи в её первоначальных формах и изображение этих форм. Свеча Яблочкова оказалась проще, удобнее и дешевле в эксплуатации, чем угольная лампа Лодыгина, она не имела ни механизмов, ни пружин.

15 апреля 1876 года Яблочков принял участие в выставке физических приборов, которая открылась в Южном Кенсингстоне (Лондон). Там учёный выступал как в качестве представителя фирмы Бреге, так и самостоятельно - экспонировал свою свечу. Лондон стал местом первого публичного показа нового источника света. На невысоких металлических постаментах, установленных на большом расстоянии друг от друга, Яблочков поставил четыре своих свечи, обёрнутых в асбест. К светильникам был подведён ток от динамо-машины, находившейся в соседнем помещении. Поворотом рукоятки ток был включён в сеть, и тотчас обширное помещение залил очень яркий, чуть голубоватый электрический свет. Многочисленная публика пришла в восторг.

Парижский ипподром, освещённый свечами Яблочкова

Лондонская улица, освещённая свечами Яблочкова

Общая схема электрического освещения Яблочкова: фонарь на 4 свечи с коммутатором, питаемый от динамо-машины Грамма

Успех свечи Яблочкова превзошёл ожидания. Вся мировая печать, в особенности техническая, была полна сведениями о новом источнике света. Газеты выходили с заголовками: «Вы должны видеть свечу Яблочкова» ; «Изобретение русского отставного военного инженера Яблочкова - новая эра в технике» ; «Свет приходит к нам с Севера - из России» ; «Северный свет, русский свет, - чудо нашего времени» ; «Россия - родина электричества» и т. д.

В конце лета 1876 года Яблочков вернулся из Лондона в Париж, где его познакомили с инженером и предпринимателем Луи Денейрузом. Для практической реализации своих изобретений и организации производства электрических свечей во Франции, по совету Антуана Бреге, Яблочков заключил с Денейрузом договор, на основании которого тот создал компанию «Syndicat d’etude d’eclairage electrique procedes Jablochkoff». Эта компания помимо производства свечей, вела также работы по установке первичных двигателей и динамомашин для осветительных установок со свечами Яблочкова и полное их оборудование. В первые годы своего существования экспортный оборот компании составил более 5 млн франков. Сам Павел Николаевич, уступив право на использование своих изобретений владельцам компании, как руководитель её технического отдела, продолжал трудиться над дальнейшим усовершенствованием системы освещения, довольствуясь более чем скромной долей от огромных прибылей компании.

Первая установка освещения свечами Яблочкова была устроена в феврале 1877 года в «Salle Marengo» магазина Лувр и состояла из 6 свечей, питаемых двумя машинами «Alliance». Во время действия их наблюдалось мерцание, объясняемое неоднородностью углей и колебаниями числа оборотов двигателя, и дребезжание колпаков («пение» свечи). В фонарях приходилось часто менять свечи после их выгорания, а для того, что бы помещение не оставалось при этом в темноте, оказалось нужным устроить особое приспособление для смены ламп.

Для расширения производства электрических свечей необходимо было решить несколько проблем, главной из которых была проблема обеспечения осветительных установок генераторами переменного тока. Первым шагом в этом направлении было построение мастерскими бельгийского изобретателя Зиновия Теофиля Грамма особого коммутатора, который присоединялся к машине постоянного тока; однако это было лишь частичным разрешением задачи. В 1877 году Грамм выпустил первые машины переменного тока для питания свечей Яблочкова. При помощи этих машин удобно было питать четыре обособленных цепи, в каждую из которых можно было включать несколько свечей. Машины были рассчитаны на электрические свечи в 100 карселей , то есть силой света 961 кандела.

Вслед за магазином Лувр свечи Яблочкова были установлены на площади перед зданием Парижской оперы, в мае 1877 года они впервые осветили одну из магистралей столицы - Avenue de l’Opera. Жители французской столицы в начале сумерек толпами стекались полюбоваться гирляндами белых матовых шаров, установленных на высоких металлических столбах. И когда все фонари разом вспыхивали ярким и приятным светом, публика приходила в восторг. Не меньшее восхищение вызывало освещение парижского крытого ипподрома. Его беговая дорожка освещалась 20 дуговыми лампами с отражателями, а места для зрителей - 120 электрическими свечами Яблочкова, расположенными в два ряда.

17 июня 1877 года свечи Яблочкова установили на Вест-Индских доках в Лондоне, несколько позже свечи Яблочкова осветили часть набережной Темзы, мост Ватерлоо, отель «Метрополь», Гатфильдский замок, Вестгейтские морские пляжи. Почти одновременно с Англией свечи Яблочкова вспыхнули в помещении торговой конторы Юлия Михаэлиса в Берлине. Новое электрическое освещение с исключительной быстротой завоевало Бельгию и Испанию, Португалию и Швецию. В Италии им осветили Колизей, Национальную улицу и площадь Колона в Риме, в Вене - парк Фольскгартен, в Греции - Фалернскую бухту. На Американском континенте «русский свет» впервые вспыхнул в 1878 году в Калифорнийском театре (California Theatre; ныне не существует) в Сан-Франциско. 26 декабря того же года свечи Яблочкова осветили магазины Винемара в Филадельфии; затем улицы и площади Рио-де-Жанейро и городов Мексики. Появились они в Дели, Калькутте, Мадрасе и ряде других городов Британской Индии. Даже персидский шах и король Камбоджи осветили «русским светом» свои дворцы.

В России первая проба электрического освещения по системе Яблочкова была проведена 11 октября 1878 года. В этот день были освещены казармы Кронштадтского учебного экипажа и площадь у дома, занимаемого командиром Кронштадтского морского порта. Спустя две недели, 4 декабря 1878 года, свечи Яблочкова - 8 шаров, впервые осветили Большой театр в Санкт-Петербурге. Газета «Новое время» в номере от 6 декабря писала:

Ни одно из изобретений в области электротехники не получало столь быстрого и широкого распространения, как свечи Яблочкова. Это был подлинный триумф русского инженера.

Компании по коммерческой эксплуатации свечи Яблочкова были основаны во многих странах мира. Свечи Яблочкова появились в продаже и начали расходиться в громадном количестве, так, к примеру, предприятие Бреге ежедневно выпускало свыше 8 тысяч свечей. Каждая свеча стоила около 20 копеек.

Успех освещения по системе Яблочкова вызвал панику среди акционеров английских газовых компаний. Они пустили в ход все средства, вплоть до явных обманов, клеветы и подкупов, чтобы дискредитировать новый способ освещения. По их настоянию английский парламент учредил в 1879 году даже специальную комиссию с целью рассмотрения вопроса о допустимости широкого использования электрического освещения в Британской империи. После длительных дебатов и выслушивания свидетельских показаний члены комиссии так и не пришли к единому мнению по этому вопросу.

В 1877 году русский морской офицер А. Н. Хотинский принимал в Америке крейсеры, строящиеся по заказу России. Он посетил лабораторию Т. Эдисона и передал ему лампу накаливания А. Н. Лодыгина и «свечу Яблочкова» со схемой дробления света. Эдисон внёс некоторые усовершенствования и в ноябре 1879 года получил на них патент как на свои изобретения. Яблочков выступил в печати с жёсткой критикой, заявив, что Томас Эдисон украл у русских не только их мысли и идеи, но и их изобретения. Профессор В. Н. Чиколев писал тогда, что способ Эдисона был не нов и обновления его ничтожны.

Прошедшая в 1881 году в Париже Международная электротехническая выставка, показала, что свеча Яблочкова и его система освещения начали терять своё значение. Хотя изобретения Яблочкова получили высокую оценку и были признаны постановлением Международного жюри вне конкурса, сама выставка явилась триумфом лампы накаливания, которую Т. Эдисон довёл до практического совершенства ещё к 1879 году. Она могла гореть 800-1000 часов без замены, её можно было много раз зажигать, гасить и снова зажигать. К тому же она была и экономичнее свечи. Всё это оказало сильное влияние на дальнейшую работу Павла Николаевича. Начиная с 1882 года он целиком переключился на создание мощного и экономичного химического источника тока.

Свеча Яблочкова в России

Свеча Яблочкова (из фондов Саратовского областного музея краеведения)

В 1878 году Яблочков решил вернуться в Россию, чтобы заняться проблемой распространения электрического освещения. На родине он был восторженно встречен как изобретатель-новатор. Вскоре после приезда изобретателя в Санкт-Петербург была учреждена акционерная компания «Товарищество электрического освещения и изготовления электрических машин и аппаратов П. Н. Яблочков-изобретатель и К°», в числе акционеров которой были промышленники, финансисты, военные - поклонники электрического освещения свечами Яблочкова. Содействие изобретателю оказывали генерал-адмирал Константин Николаевич, композитор Н. Г. Рубинштейн и другие известные лица. Компания открыла свой электротехнический завод на Обводном канале.

Первая проба электрического освещения по системе Яблочкова была проведена в России 11 октября 1878 года. В этот день были освещены казармы Кронштадтского учебного экипажа и площадь у дома, занимаемого командиром Кронштадтского морского порта. Спустя две недели, 4 декабря 1878 года, свечи Яблочкова - 8 шаров, впервые осветили Большой театр в Санкт-Петербурге. Газета «Новое время» в номере от 6 декабря писала:

Весной 1879 года товарищество «Яблочков-изобретатель и К°» соорудило ряд установок электрического освещения. Большинство работ по установке электрических свечей, разработке технических планов и проектов проводилось под руководством Павла Николаевича. Свечи Яблочкова, изготовляемые парижским, а затем петербургским заводом общества, зажглись в Москве и Подмосковье, Ораниенбауме, Киеве, Нижнем Новгороде, Гельсингфорсе (Хельсинки), Одессе, Харькове, Николаеве, Брянске, Архангельске, Полтаве, Красноводске, Саратове и других городах России.

С наибольшим интересом изобретение П. Н. Яблочкова было встречено в учреждениях военно-морского флота. К середине 1880 года в России было установлено около 500 фонарей со свечами Яблочкова. Из них больше половины было установлено на военных судах и на заводах военного и военно-морского ведомств. Например, на Кронштадтском пароходном заводе было установлено 112 фонарей, на царской яхте «Ливадия» - 48 фонарей, на других судах флота - 60 фонарей, при этом установки для освещения улиц, площадей, вокзалов и садов имели каждая не более 10-15 фонарей.

Однако электрическое освещение в России такого широкого распространения, как за границей, не получило. Причин для этого было много: русско-турецкая война, отвлекавшая много средств и внимания, техническая отсталость России, инертность, а подчас и предвзятость городских властей. Не удалось создать и сильную компанию с привлечением крупного капитала, недостаток средств ощущался всё время. Немаловажную роль сыграла и неопытность в финансово-коммерческих делах самого главы предприятия. Павел Николаевич часто отлучался по делам в Париж, а в правлении, как писал В. Н. Чиколев в «Воспоминаниях старого электрика», «…недобросовестные администраторы нового товарищества стали швырять деньги десятками и сотнями тысяч, благо они давались легко!» .

Конструктивные особенности

Подсвечники для свечи Яблочкова с пружинным зажимом

Лампа для свечи Яблочкова (Париж)

Устройство свечи Яблочкова

Первая модель свечи Яблочкова, которая демонстрировалась на выставке в Лондоне, состояла из двух параллельно расположенных углей; для того, чтобы дуга горела только на конце углей, один их углей окружался лёгкоплавкой фарфоровой трубкой или трубкой из белого стекла, как это делалось для имитации свечей в газовом освещении. При обгорании углей эта трубка постепенно расплавлялась. В связи с тем, что угли при питании их постоянным током сгорали неодинаково, положительный уголь делался толще отрицательного. Более толстый положительный электрод электрических свечей давал довольно заметную тень. Дальнейшие исследования показали, что равномерное сгорание углей одинакового сечения возможно только при использовании переменного тока для питания свечи.

Свеча устанавливалась в специальный подсвечник, состоявший из двух медных деталей, изолированных одна от другой и смонтированных на подставке из шифера или какого-либо другого материала. Медные детали представляли собой пружинный зажим, в который вставлялись оба угля для создания хорошего контакта. К этому зажиму подходили два провода от источника тока.

Само название свечи было дано этому источнику света вследствие того, что внешне свечу напоминала фарфоровая оболочка угля и пламя находилось не между электродами, а на конце белого стержня, как это было, например, у стеариновой свечи.

К февралю 1877 года Яблочков несколько усовершенствовал свечу. Он отказался от трубки из фарфора. Свеча теперь состояла из двух угольных блоков 120 мм длиной и 4 мм в диаметре, разделённых изоляционным материалом - каолином. Расстояние между углями составляло 3 мм. На верхнем крае углей устанавливался замыкатель («коломбина») в виде обугленной пластинки, прикреплённой посредством бумажной полоски . При подключении свечи к источнику переменного тока , предохранительная перемычка на конце сгорала, поджигая дугу. Свеча горела ¾ часа; по истечении этого времени приходилось вставлять в фонарь новую свечу. Сила света свечей составляла 20-25 карселей, то есть 192-240 кандела. Эти свечи использовались для освещения магазина Лувр.

На основе опыта по освещению магазина Лувр Яблочкову удалось внести в конструкцию свечи существенные изменения: каолин был заменён гипсом, благодаря чему возрос световой поток; длина угольных блоков доведена до 275 мм, из которых 225 мм было полезной; благодаря улучшению материала, из которого делались свечи, срок их службы был удвоен и доведён до полутора часов. Нижние края углей позднее стали металлизировать (то есть покрывать красной медью), для того, чтобы получить более хороший контакт при вставлении свечи в пружинный держатель. Эта конструкция свечи была рассчитана на массовое распространение.

Свечи закрывались глазурированными шарами из стекла. Диаметр шара обычно был равен 400 мм, вверху его делалось отверстие. Фонари были высотой до 700 мм, в их цоколе имелись дверцы для вентиляции.

Для увеличения времени освещения была разработана конструкция фонаря на 4 свечи, в котором помещалось крестообразно четыре держателя на общей подставке. Через определённый промежуток времени ламповщики обходили фонари и переводили ток особыми коммутаторами со сгоревшей свечи на новую. Впоследствии были придуманы так называемые автоматические подсвечники. Один из них представлял собой конструкцию из нескольких свечей, в каждую из которых упирался металлический стержень. Этот стержень поддерживал рычажок, на котором находился контакт. Когда свеча догорала до определённого уровня, упор уничтожался, контакт падал и ток переходил на другую свечу. Другое устройство было сделано иначе: в середину подсвечника помещался стержень, от которого натягивалась тонкая шёлковая нить; когда свеча догорала, нить загоралась, поддерживаемый ей рычажок падал и переносил ток на другую свечу. Кроме того, для перевода тока под подсвечником устраивался ртутный коммутатор; он состоял из коробки с несколькими отверстиям, в которую была налита ртуть. На оси помещался металлический круг и несколько стержней; в отделение с ртутью входил только один стержень. При таком устройстве, когда свеча горела, рычажок был притянут, а стержень находился в ртути; как только свеча догорала или случайно потухала, рычажок падал, стержень выходил из отделения с ртутью, а новый входил в другое отделение и ток передавался на следующую свечу.

Прочие усовершенствования

Павел Яблочков постоянно вносил усовершенствования в конструкцию лампы. Помимо основного французского патента № 112024 он получил к нему ещё шесть привилегий.

Первая дополнительная привилегия, датированная 16 сентября 1876 года, закрепила за Яблочковым приоритет в замене каолина другими силикатообразными веществами с присадками солей металлов для окраски пламени. Характер изоляционного материала, который помещался в свече между электродами имел большое значение. Остановившись сначала на каолине, Павел Николаевич продолжал изыскивать другие подходящие материалы. Кроме того Яблочков начал использовать эту изоляционную прослойку, для того чтобы окрашивать пламя дуги в разные цвета. Одновременно Яблочков запатентовал изготовление свечей нескольких калибров по силе света. В результате длительной работы ему удалось добиться однородности качества углей и выпускать их в довольно большом ассортименте силой света от 8 до 600 карселей, то есть от 77 до 5766 кандел.

Во второй своей дополнительной привилегии от 2 октября 1876 года Яблочков предусмотрел применение в качестве изолирующей прослойки таких смесей, которые под влиянием нагрева могут превращаться в некоторое небольшое количество полужидкой текучей массы и образовывать дугу в том месте между электродами, где эта капля будет касаться электродов; дуга при этом может перемещаться при движении полужидкой капли. Такие вещества способны увеличивать длину дуги при том же напряжении тока, что было использовано Яблочковым для изготовления свечей на разные силы света.

Третье дополнение к основному французскому патенту № 112024, взятое 23 октября 1876 года, предусматривало, что изоляционная масса делается не из твёрдых кусков, а из порошка, причём угли окружаются оболочкой, наружная часть которой делается из асбестового картона. Угли вокруг оболочки окружены порошком, оболочки углей друг от друга также отделяются порошком.

По четвёртому дополнению от 21 ноября 1876 года угли заменяются трубками, содержащими ту же массу, которая применяется для изоляции. В шестом, последнем, дополнении к патенту № 112024 от 11 марта 1879 года Яблочков снова вернулся к массе, которая должна обеспечивать новое зажигание после потухания свечи. Для осуществления этого масса должна быть достаточно проводящей для возобновления зажигания. Это было достигнуто прибавлением к массе до 10 % цинкового порошка; саму же массу Павел Николаевич сделал из смеси гипса с сернокислым барием.

Патенты

Помимо французского патента № 112024, патенты на электрическую свечу П. Н. Яблочков получил и в других странах:

  • в Англии - на «усовершенствование электрического света», выданный 9 марта 1877 года за № 3552 в качестве предварительной спецификации, и на «усовершенствование в электрических лампах и в устройствах для разделения и распределения электрического света, к ним относящихся», выданный 20 июля 1877 года за № 494.
  • в Германии - на электрическую лампу, выданный 14 августа 1877 года за № 663.
  • в России - на «электрическую лампу и способ распределения в оной электрического тока», выданный 6 (12) апреля 1878 года.
  • в США - на электрическую лампу, выданный 15 ноября 1881 года.

Недостатки свечи Яблочкова

Недостатки, присущие свечам Яблочкова, можно классифицировать следующим образом:

  1. Короткий срок службы свечи; здесь Яблочков достиг возможного технического предела - полтора часа. Увеличивать длину углей было далее невозможно, так как это приводило бы к большему увеличению диаметра колпаков.
  2. Потухание одной лампы связано с потуханием всех последовательно включенных свечей.
  3. Потухшую свечу вновь зажечь было невозможно. Практического разрешения этого вопроса не было найдено.
  4. Для переключения перегоревших ламп требовалось участие обслуживающего персонала. Этот недостаток также практически не был устранён.

Примечания

Литература

  • Капцов Н. А. Павел Николаевич Яблочков, 1847-1894: Его жизнь и деятельность. - М.: Гостехиздат, 1957. - 96 с. - (Люди русской науки).
  • Капцов Н. А. Яблочков - слава и гордость русской электротехники (1847-1894). - М: Военное изд-во Министерства вооружённых сил СССР, 1948.
  • П. Н. Яблочков. К 50-летию со дня смерти (1894-1944) / Под ред. проф. Л. Д. Белькинда. - М., Л.: Государственное энергетическое изд-во, 1944. - С. 23-31
  • Павел Николаевич Яблочков. Труды. Документы. Материалы / отв. ред. чл.-корр. АН СССР М. А. Шателен, сост. проф. Л. Д. Белькинд. - М.: Изд-во Академии наук СССР, 1954. - С. 67

Лампочка накаливая – предмет, знакомый всем. Электричество и искусственный свет уже давно стали для нас неотъемлемой частью действительности. Но мало кто задумывается, как появилась та самая первая и привычная нам лампа накаливания.

Наша статья расскажет вам, что собой представляет лампа накаливания, как она работает и как появилась в России и во всем мире.

Что собой представляет

Лампа накаливания — электрический вариант источника света, основная часть которого представляет собой тугоплавкий проводник, играющий роль тела накала. Проводник размещен в колбе из стекла, которая внутри бывает накаченной инертным газом или полностью лишенной воздуха. Пропуская через тугоплавкий тип проводника электрический ток, данная лампа может испускать световой поток.

Свечение лампы накаливания

Принцип функционирования базируется на том, что когда электрический ток течет по телу накала, данный элемент начинает накаливаться, нагревая вольфрамовую нить. Вследствие этого нить накала начинает испускать излучение электромагнитно-теплового типа (закон Планка). Для создания свечения температура накала должна составлять пару тысяч градусов. При снижении температуры спектр свечения будет становиться все более красным.
Все минусы, имеющиеся у лампы накаливания, кроются в температуре накала. Чем лучше нужен световой поток, тем большая температура потребуется. При этом вольфрамовая нить характеризуется пределом накала, при превышении которого этот источник света навсегда выходит из строя.
Обратите внимание! Температурный предел нагрева для ламп накаливания — 3410 °C.

Конструкционные особенности

Поскольку лампа накаливания считается самым первым источников света, то вполне закономерно, что ее конструкция должна быть достаточной простой. Особенно, если сравнивать с нынешними источниками света, которые ее постепенно вытесняют с рынка.
В лампе накаливания ведущими элементами считаются:

  • колба лампы;
  • тело накала;
  • токовводы.

Обратите внимание! Первая подобная лампа имела именно такое строение.

Конструкция лампы накаливания

На сегодняшний день разработано несколько вариантов ламп накаливания, но такое строение характерно для самых простых и самых первых моделей.
В стандартной лампочке накаливания, кроме вышеописанных элементов имеется предохранитель, который представляет собой звено. Оно состоит из ферроникелевого сплава. Его вваривают в разрыв одного из двух токовводов изделия. Звено размещается в ножке токоввода. Оно нужно для того, чтобы предупредить разрушение стеклянной колбы во время прорыва нити накала. Это связано с тем, что при прорыве вольфрамовой нити создается электрическая дуга. Она может оплавить остатки нити. А ее фрагменты могут повредить колбу из стекла и привести к возникновению возгорания.
Предохранитель же разрушает электрическую дугу. Такое ферроникелевое звено размещается в полости, где давление равняется атмосферному. В данной ситуации дуга гаснет.
Такое строение и принцип работы обеспечили лампе накаливания широкое распространение по миру, но из-за их высокого энергопотребления и непродолжительному сроку службы, она сегодня стали использоваться гораздо реже. Связано это с тем, что появились более современные и эффективные источники света.

История открытия

В создание лампы накаливания в том виде, в котором она известна на сегодняшний день, сделали свой вклад исследователи, как из России, так и из других стран мира.

Александр Лодыгин

До момента, когда изобретатель Александр Лодыгин из России начал трудиться над разработкой ламп накаливания, в ее истории нужно отметить некоторые важные события:

  • в 1809 году известный изобретатель Деларю из Англии создал свою первую лампу накаливания, оснащенную платиновой спиралью;
  • через почти 30 лет в 1938 году уже бельгийский изобретатель Жобар разработал угольную модель лампы накаливания;
  • изобретатель Генрих Гёбель из Германии в 1854 году уже представил первый вариант рабочего источника света.

Лампочка немецкого образца имела обугленную нить из бамбука, которая помещалась в вакуумированный сосуд. В течение пяти последующих лет Генрих Гёбель продолжал свои наработки и в конечном счете пришел к первому опытному варианту рабочей лампочки накаливания.

Первая практичная лампочка

Джозеф Уилсон Суон, знаменитый физик и химик из Англии, в 1860 году явил миру свои первые успехи в области разработки источника света и за свои результаты был вознагражден патентом. Но некоторые трудности, которые возникли с созданием вакуума, показали неэффективную и не долгосрочную работу лампы Суона.
В России, как уже отмечалось выше, исследованиями в области эффективных источников света занимался Александр Лодыгин. В России он смог добиться свечения в стеклянном сосуде угольного стержня, из которого предварительно был откачен воздух. В России история открытия лампочки накаливания началась в 1872 году. Именно в этом году Александру Лодыгины удались его эксперименты с угольным стержнем. Через два года он в России получает патент под номером 1619, который был выдан ему на нитевой вид лампы. Нить он заменил на стержень из угля, находившийся в вакуумной колбе.
Ровно через год В. Ф. Дидрихсон значительно улучшил вид лампы накаливания, созданную в России Лодыгином. Усовершенствование заключалось в замене угольного стержня на несколько волосков.

Обратите внимание! В ситуации, когда один из них перегорал, происходило автоматическое включение другого.

Джозеф Уилсон Суон, который продолжал свои попытки усовершенствовать уже имеющеюся модель источника света, получает патент на лампочки. Здесь в качестве нагревательного элемента выступало угольное волокно. Но здесь оно располагалось уже в разреженной атмосфере из кислорода. Такая атмосфера позволила получить очень яркий свет.

Вклад Томаса Эдисона

В 70-х года позапрошлого столетия в изобретательскую гонку по созданию работающей модели лампы накаливания включился изобретатель из Америки — Томас Эдисон.

Томас Эдисон

Он проводил исследования в вопросе применения в виде элемента накаливания нитей, произведенных из разнообразных материалов. Эдисон в 1879 году получает патент на лампочку, оснащенной платиновой нитью. Но через год он возвращается к уже проверенному угольному волокну и создает источник света со сроком эксплуатации в 40 часов.

Обратите внимание! Одновременно с работой по созданию эффективного источника света, Томас Эдисон создал поворотный тип бытового выключателя.

При том, что лампочки Эдисона работают всего лишь 40 часов, они начали активно вытеснять с рынка старый вариант газового освещения.

Результаты работ Александра Лодыгина

В то время, как на другом конце мира Томас Эдисон проводил свои эксперименты, в России аналогичными изысканиями продолжал заниматься Александр Лодыгин. Он в 90-х годах 19 века изобрел сразу несколько видов лампочек, нити которых были изготовлены из тугоплавких металлов.

Обратите внимание! Именно Лодыгин первым решился использовать вольфрамовую нить в качестве тела накаливания.

Лампочка Лодыгина

Кроме вольфрама он также предлагал использовать нити накаливания, изготовленные из молибдена, а также скручивать их в форме спирали. Такие свои нити Лодыгин размещал в колбах, из которых откачивался весь воздух. Вследствие таких действий нити предохранялись от кислородного окисления, что делало срок службы изделий значительно продолжительным.
Первый тип коммерческой лампочки, произведенный в Америке, содержала вольфрамовую нить и изготавливалась по патенту Лодыгина.
Также стоит отметить, что Лодыгиным были разработаны газонаполненные лампы, содержащие угольные нити и заполненные азотом.
Таким образом, авторство первой лампочки накаливания, отправленной в серийное производство, принадлежит именно российскому исследователю Александру Лодыгину.

Особенности работы лампочки Лодыгина

Для современных ламп накаливания, которые являются прямыми потомками модели Александра Лодыгина, характерны:

  • отменный световой поток;
  • отличная цветопередача;

Цветопередача лампы накаливания

  • низкий показатель конвекции и проводимости тепла;
  • температура накала нити — 3400 K;
  • при максимальном уровне показателя температуры накала коэффициент для полезного действия составляет 15 %.

Кроме этого данный тип источника света в ходе своей работы потребляет много электроэнергии, по сравнению с другими современными лампочками. Из-за конструкционных особенностей такие лампы могут работать примерно 1000 часов.
Но, несмотря на то, что по многим критериям оценки данная продукция уступает более совершенным современным источникам света, она, благодаря своей дешевизне, все еще остается актуальной.

Заключение

В создании эффективной лампы накаливания участвовали изобретатели из разных стран. Но только российский ученый Александр Лодыгин смог создать самый оптимальный вариант, которым мы, собственно, и продолжаем пользоваться по сегодняшний день.


Секреты установки точечных светильников в натяжной потолок: насколько это сложно?