Практическое применение интегралов. Применение определенного интеграла в медицине. «Определённый интеграл и его применение»

Открытый урок по алгебре и началам анализа в 11 классе с расширенным изучением математики и физики

«Применение методов математического анализа при решении практических задач».

Учитель: Вишневская Н.В.

Цели урока: 1. Повторить основные типы задач, решаемые методами математического анализа.

2. Повторить алгоритмы решения.

3. Разобрать решение задач повышенной трудности.

4. Решить экономические задачи.

План проведения урока:

    На доске разбираются две задачи повышенной трудности (карточки № 7 и № 5). Пока ребята готовятся, класс устно отвечает на вопросы:

    а) Области, где применяются методы математического анализа;

б) алгоритм решения задач методом поиска наибольших и наименьших значений функции;

в) алгоритм решения задач с помощью определенного интеграла.

    В это же время 6 человек работают по карточкам (№ 3, 4, 6, 8, 9, 10).

    Заполняются таблицы.

    Проверяются задачи на доске, учитель проверяет правильность решения задач по карточкам.

    Разбирается на доске экономическая задача (карточка № 1, 2).

    Домашняя контрольная работа.

Алгоритм решения задач методом поиска наибольших и наименьших значений функции.

Алгоритм вычисления геометрических и физических величин с помощью определенного интеграла.

    Выражают искомую величину как значение в некоторой точке в функции F .

    Находят производную f этой функции.

    Выражают функцию F в виде определенного интеграла от f и вычисляют его.

    Подставляя значение х = b находят искомую величину.

Домашние задачи (на доске):

Карточка № 7

Два корабля движутся по двум перпендикулярным прямым, пересекающимся в точке О , по направлению к О . В какой-то момент времени оба находятся в 65 км от О , скорость первого равна 15 км/ч, второго – 20 км/ч. От первого корабля отходит моторная лодка, движущаяся со скоростью 25 км/ч.

а) За какое наименьшее время катер может доплыть от первого корабля до второго?

б) За какое наименьшее время катер может доплыть от первого корабля до второго и вернуться обратно на первый корабль?

V 1 = 15 км/ч

65 км S 1 О

S 3 S 2

65 км

V л = 25 км/ч

V 2 = 20 км/ч

Решение:

х – время, которое прошло от того момента, когда оба корабля находились в 65 км от О , до момента отправления катера.

время, которое необходимо катеру на путь от 1-го корабля до 2-го.

В момент отправления катера 1-й корабль был на расстоянии
км от О ; в момент прибытия катера на 2-ой корабль, расстояние между ним и О было равно км; путь катера равен
. Тогда по теореме Пифагора

.

Продифференцируем по х :

;

;

Ответ: а) 1 час; б) 3 часа.

Карточка № 5

Котел имеет форму параболоида вращения. Радиус его основания R = 3 м, глубина Н = 5 м. Котел наполнен жидкостью, удельный вес которой 0,8 Г/см 3 . Вычислить работу, которую нужно произвести, чтобы выкачать жидкость из котла.

у


А R В


dy Н


у

О х х

R = 3 м

Н = 5 м

уд. вес = 0,8 Г/см 3

Вычислить работу, которую нужно произвести, чтобы выкачать жидкость из котла.

Решение:

В плоскости сечения хОу АОВ – парабола, уравнение которой
. Найдем параметр а .

Координаты точки В должны удовлетворять этому уравнению, т.е.

,

, следовательно
.

Разделим параболоид на слои плоскостями, параллельными поверхности жидкости. Пусть толщина слоя на глубине (Н у) равна dy . Тогда, принимая приближенно слой за цилиндр, получим его объем
.

Из уравнения параболы
, тогда
, т.е. вес слоя жидкости равен
.

Следовательно, чтобы выкачать жидкость с глубины
, потребуется затратить элементарную работу
,
. Тогда

, тогда .

Ответ:
.

Работа в классе.

Карточка № 6

Какую работу нужно затратить, чтобы растянуть пружину на 6 см, если сила 1 кГ растягивает ее на 1 см?

Решение:

Согласно закону Гука сила F кГ, растягивающая пружину на х , равна
, k – коэффициент пропорциональности.

х = 0,01 м

F = 1 кГ

Тогда
, следовательно
.

Искомая работа
.

Ответ: 0,18 кГм.

Карточка № 8

Вычислить работу силы F при сжатии пружины на 5 см, если для сжатия ее на 1 см нужна сила в 1 кг.

Решение:

По закону Гука
.

х = 0,01 м

F = 1 кГ

Тогда
, следовательно
.

Искомая работа
.

Ответ: 0,125 кГм.

Карточка № 9

Сила F , с которой электрический заряд отталкивает заряд (того же знака), находящийся от него на расстоянии r , выражается формулой

,

где k – постоянная.

Определить работу силы F при перемещении заряда из точки , отстоящей от на расстоянии , в точку , отстоящую от на расстоянии , полагая, что заряд помещен в точке , принятой за начало отсчета.

Решение:

Работа определяется по формуле
,
. Тогда

.

При
получим
.

Ответ:
.

Карточка № 3

Определить силу давления воды на вертикальную стенку, имеющую форму полукруга радиуса R = 6 м, диаметр которого находится на поверхности воды.

Решение:

Сила давления жидкости на площадку площадью S при глубине погружения х равна
, – удельный вес жидкости.

О


х С

А В

Полукруг параллельными прямыми разделим на полоски, которые примем за прямоугольник. Пусть заштрихованная полоска имеет длину АВ , ширину dx и находится на глубине х
.

Давление воды на полоску, находящуюся на глубине х , будет равно .

Отсюда

,

,

,

.

Удельный вес воды 1 см 3 = 1 Г, следовательно вес 1м 3 = 1000 кГ.

;

1 кГ 9,81 н

1 бар = 0,987 атм.

Ответ: 144000 кГ.

Карточка № 4

Скорость движения точки
м/сек. Найти путь s , пройденный точкой за время Т = 8 сек после начала движения. Чему равна средняя скорость движения за этот промежуток?

Решение:

, следовательно
,
,
.

Следовательно
.

.

Ответ: 512 м; 64 м/сек.

Карточка № 1 (решается в классе на доске)

Средние совокупные издержки производства мыла (в тыс. рублей на тонну) на Мухинском мыловаренном заводе изменяются в зависимости от объема годового выпуска Q (в тоннах) по закону:

.

Связь между годовым объемом продаж, равным величине годового выпуска Q , и ценой мыла Р (в тыс. рублей за тонну) описывается формулой

.

Реализовав по фиксированной цене все сваренное за год мыло, завод получил максимально возможную прибыль. Какова была при этом выручка предприятия?

Решение:

Выразим через Q сначала цену мыла из формулы
.

.

Тогда прибыль G можно выразить:

Найдем критические точки этой функции:

,
.

Критические точки 100, –340, –120.

Отрицательные корни не имеют экономического смысла.

Q

G

;

.

Значит оптимальный годовой объем мыла
т, тогда цена
(тыс. руб./т).

Тогда годовая выручка R составит: (тыс. руб.).

Ответ: 1 млн. руб.

Карточка № 10

Найти величину давления воды на прямоугольник, вертикально погруженный в воду, если известно, что его основание равно 8 м, высота 12 м, верхнее основание параллельно поверхности воды и находится на глубине 5 м.

Решение:

5 м

8 м

х

dx 12 м

,
,
м.

кГм.

.

Ответ:
кГм.

Карточка № 2 (дополнительная)

Производственные мощности позволяют предприятию «Линотрон» выпускать не более 600 тонн ваты в год. Зависимость величины совокупных издержек (в тыс. рублей) от годового объема производства Q (в тоннах) имеет вид

.

Связь между годовым объемом продаж ваты, который совпадает с объемом годового производства, и ценой на вату Р (в тыс. рублей за тонну) описывается функцией

Цена на вату устанавливается 1 января 1995 года и пересматривается лишь 1 января следующего года.

Найдите с точностью до 1 % рентабельность производства по издержкам, если за 1995 год предприятие получит максимально возможную прибыль.

Решение:

Используя зависимости
и , выразим .

у у










a 0 b c x a 0 b c x

Отдел образования гомельского городского

Исполнительного комитета

Государственное учреждение образования

«Гимназия №71 г. Гомеля»

Конкурсной работы

«Применение дифференциального и интегрального исчисления к решению физических и геометрических задач в MATLab»

Исполнитель: Орехова Ксения Ивановна,

учащаяся 9Б класса

Руководитель: Горский Сергей Михайлович,

учитель информатики

Государственного учреждения образования

«Гимназия №71 г. Гомеля»

Введение

1. История интегрального и дифференциального исчисления

2. Дифференциал в физике

3. Приложения определенного интеграла к решению некоторых задач механики и физики

4. Дифференциальные уравнения

5. Примеры решения задач в matlab

Список использованных источников

Введение

Факультативный курс «Применение дифференциального и интегрального исчисления к решению физических и геометрических задач» имеет своей целью изучение курса математического анализа на основе практического освещения материала, на основе использования методов данного раздела математики для решения задач геометрии и физики; а так же реализации этих задач на компьютере (с помощью пакета MATLAB).

В результате можно сказать, что такое объёмное, не конкретное формулирование темы и цели факультативного курса даёт возможным его реализацию в школе. В школьном курсе алгебры и начал анализа курс «Применение дифференциального и интегрального исчисления к решению физических и геометрических задач» направлен на изучение определённого интеграла.

Место темы в школьном курсе математики .

Факультативный курс «Применение интегрального исчисления к решению физических и геометрических задач» углубляет материал курса алгебры и начал анализа в одиннадцатом классе и раскрывает возможности для практического закрепления материала по темам, входящим в школьный курс математики. Это темы «Производная функции», «Определённый интеграл» в алгебре, и некоторые темы в геометрии и физике. В результате данный факультативный курс реализует межпредметную связь алгебры и математического анализа с геометрией, информатикой и физикой.

Развитию у учащихся правильных представлений о характере отражения алгеброй основных элементов в геометрии и физике, роли математического моделирования в научном познании способствует знакомство их с решением и визуализацией различных математических задач на компьютере. Изложение факультативного курса базируется на основных возможностях версии 6.1 пакета математических и инженерных вычислений MATLAB, ставшего в настоящее время стандартным средством поддержки изучения высшей математики, численного анализа и других учебных курсов во многих университетах. Учащимся излагаются основные возможности численных и символьных вычислений, программирования и визуализации результатов, предоставляемые ядром системы MATLAB и его пакета расширения SymbolicMathToolbox.

Основные понятия факультативного курса : определённый интеграл, длина кривой, площадь, поверхность вращения, цилиндрическая поверхность, объём тела и др.

Цели факультативного курса.

1. Обучающие : провести практическое закрепление по теме «Определённый интеграл», познакомить учащихся с пакетом математических и инженерных вычислений MATLAB 6.1, проиллюстрировать реализацию межпредметной связи математического анализа с геометрией, информатикой и физикой.

2. Воспитывающие: создание условий для успешного профессионального самоопределения учащихся посредством решения трудных задач с использованием компьютера, воспитание мировоззрения и ряда личностных качеств, средствами углубленного изучения математики.

3. Развивающие: расширение кругозора учащихся, развитие математического мышления, формирование активного познавательного интереса к предмету, развитие профессиональных интересов учащихся, развитие навыков самостоятельной и исследовательской деятельности, развитие рефлексии учащихся (осознание своих склонностей и способностей, необходимыми для будущей профессиональной деятельности).


Программа:

Построение астроиды

t=-2*pi:pi/20:2*pi;

h=300; figure("Units","Pixels","position",

xlabel("x"); ylabel("y");

axis([-3, 3, -3, 3]);

% Поверхность вращения

t=-2*pi:pi/20:2*pi;

Meshgrid(t,v);

set(hFigure,"Color",);

set(hAxes,"Color",);

xlabel("x"); ylabel("y"); zlabel("z");

hPlot=plot(X,Y);

set(hPlot,"LineWidth",5)

set(hPlot,"Color",)

Задача 5. Построить в полярных координатах лемнискату Бернулли: .

Программа:

for p=0:pi/60:2*pi

if 2*a^2*cos(2*p)>=0

set(hFigure,"Color",);

hP=polar(phi,r);

set(hP,"LineWidth",2);

Результат (рис. 17):

Задача 6. Используя численные и символьные вычисления в MATLAB найти: а) определённый интеграл; б) двойной интеграл; в) поверхностный интеграл (1-го рода).

а) Классической задачей численного анализа является задача о вычислении определённых интегралов. Из всех методов вычисления определённых интегралов самым простым, но в то же время довольно успешно применяемым является метод трапеции. В MATLAB для этого метода предусмотрена функция: trapz(x,y) (команда edit trapz позволяет вывести текст этой функции). Одномерный массив х (вектор) содержит дискретные значения аргументов подынтегральной функции. Значения подынтегральной функции в этих точках сосредоточены в одномерном массиве y. Чаще всего для интегрирования выбирают равномерную сетку, то есть значения элементов массива х отстоят друг от друга на одну и ту же величину – шаг интегрирования. Точность вычисления интеграла зависит от величины шага интегрирования: чем меньше этот шаг, тем больше точность.

Задача 7. Вычислить интеграл методом трапеции с различными шагами интегрирования (для наблюдения 14 десятичных цифр после запятой нужно предварительно ввести и исполнить команду formatlong).

Программа: Результат:

functiont=trap(dx)

y=sin(x).*exp(-x);

t=trapz(x,y); >> format long

ans = 0.42255394026468

>> trap(0.1)

ans = 0.50144886299125

>> trap(0.01)

ans = 0.50226667654901

>> trap(0.001)

ans = 0.50227485744814

Метод трапеций является очень универсальным методом и хорошо подходит интегрирования не слишком гладких функций. Если же функция под знаком интеграла является гладкой (существуют и непрерывны несколько первых производных), то лучше применять методы интегрирования более высоких порядков точности. При одном и том же шаге интегрирования методы более высоких порядков точности достигают более точных результатов.

В системе МАТLАВ методы интегрирования более высоких порядков точноcти реализуются функциями quad (метод Симпсона) и quad8 (метод Ньютона-Котеса 8-го порядка точности). Оба этих метода являются к тому же адаптивными . Последнее означает, что пользователю нет необходимости контролировать достигнутую точность результата путем сравнения последовательных значении, соответствующих разным шагам интегрирования. Все это указанные данные функции выполняют самостоятельно.

У функции quad8 более высокий порядок точности по сравнению с функцией quad, что очень хорошо для гладких функций, так как обеспечивается более высокая точность результата при большем шаге интегрирования (меньшем объеме отчислений). Однако функция quad может иметь не меньшее, а даже большее быстродействие для не слишком гладких функций (разрывны или велики по абсолютной величине вторая или третья производные). В любом случае обе эти функции по умолчанию обеспечивают одинаковую относительную точность результата, равную 0.001.

Как и многие другие функции системы МАТLАВ, функции quad и quad8 могут принимать различное количество параметров. Минимальный формат вызова этих функций включает в себя три параметра: имя подынтегральной функции, нижний предел интегрирования и верхний предел интегрирования. Если применяется четвертый параметр, то он является требуемой относительной точностью результата вычислений. Кстати, если обе эти адаптивные функции не могут обеспечить получение необходимой точности (расходящийся или близкий к этому интеграл), то они возвращают символическую бесконечность Inf.

Для вычисления определённых интегралов символьными методами можно использовать два варианта решения: напрямую или по этапам (с подстановкой символьных чисел).

Задача 8. Вычислить определённый интеграл .

Программа: Результат:

a1=sym("0"); b1=sym("2");

% 1 способ: работа с подстановкой символьных чисел

symbol=int(w,"t",a,b)

symbol2a=subs(symbol,,)

number=vpa(symbol2a)

% 2 способ: работа с символьными числами

symbol2b=int(w,"t",a1,b1) symbol =

2.6666666666666666667

Задача 9. Вычислить площадь поверхности, полученной вращением астроиды вокруг оси Ox : . (поверхность визуализирована в задаче 2).

Программа: Результат:

t1=sym("0"); t2=sym("pi/2"); a=sym("1");

x=a*cos(t)^3; y=a*sin(t)^3;

f=y.*sqrt(diff(x)^2+diff(y)^2);

symbol=simplify(int(4*pi*f,"t",t1,t2))

number=vpa(symbol) symbol =

б) Двойные интегралы сводятся к вычислению повторных определённых интегралов, один из которых является внутренним, а другой внешним. Внутренний интеграл является подынтегральной функцией для внешнего интеграла. Можно было бы для численных вычислений написать некоторую цепочку вычислений, в которой многократные вычисления подынтегральной функции сводились бы к многократным вызовам функции quad. Однако нет необходимости делать это самостоятельно, так как в системе MATLAB для этого имеется специальная функция dblquad.

Задача 8. Вычислить интеграл , где .


Программа:

Результат:

function z=fof(x,y)

z=x.*sin(y)+y.*sin(x); >> format long

>> dblquad("fof",0,1,1,2)

1.16777110966887

Задача 9. С помощью символьных вычислений получить следующие интегралы , , , , , где .

Программа:

z=sym("x*sin(y)+y*sin(x)");

i2=int(z,"x",0,1)

i3=int(int(z,"x"),"y")

i4=int(int(z,"x",1,2),"y",0,1)

i5=int(int(x+y,"y",x,1),"x",0,1) i1 =

1/2*x^2*sin(y)-y*cos(x)

1/2*sin(y)-y*cos(1)+y

1/2*x^2*cos(y)-1/2*y^2*cos(x)

1/2*cos(2)-cos(1)+3/2

Так как символьные вычисления не дают погрешности метода вычисления и сами по себе они более точные, то можно увидеть, что функция dblquad даёт точный результат до 7 знака после запятой.

в) Из высшей математики известно, что к определенным и двойным интегралам могут быть сведены многие другие типы интегралов, например поверхностный интеграл 1-го рода. Так как при его нахождении используется дифференцирование под знаком интеграла, то использовать численные вычисления некорректно.

Задача 10. Вычислить поверхностный интеграл 1-го рода: , где S – часть плоскости , лежащая в первом октанте (по теореме 2).

Программа: Результат:

fun=subs(f2,z,f1)

d=1+diff(f1,x)^2+diff(f1,y)^2

syms x1 x2 y1 y2

intpov1=int(int(fun*sqrt(d),"y",y1,y2),"x",x1,x2)

number=vpa(intpov1) fun =

Задача 11. Вычислить поверхностный интеграл 1-го рода , где S - сфера (по теореме 3).

Сначала создадим функцию, описывающую поверхность по которой происходит интегрирование:

function =pov;

syms x y z u v a

x=a*sin(u)*cos(v);

y=a*sin(u)*sin(v);

Программа:

syms x y z u v a

f=sym("x^2+y^2");

E=diff(x0,"u")^2+diff(y0,"u")^2+diff(z0,"u")^2;

G=diff(x0,"v")^2+diff(y0,"v")^2+diff(z0,"v")^2;

F=diff(x0,"u")*diff(x0,"v")+diff(y0,"u")*

diff(y0,"v")+diff(z0,"u")*diff(z0,"v");

W=sqrt(E*G-F^2); f2=W*subs(f,,);

syms u1 u2 v1 v2

intpov=p*int(int(f2,"v",v1,v2),"u",u1,u2)

intpov2=simplify(intpov)

number=vpa(intpov2)

int=subs(intpov2,a,b) intpov =

4/3*a^2*pi*(a^4)^(1/2)*4^(1/2)

8/3*a^4*pi*csgn(a^2)

8.377580412*a^4*csgn(a^2)

Примечание. Функция сsgn является специфической в MATLAB. Она не может быть введена пользователем и возникает только при оперировании с функцией simplify (упрощение символьных выражений). Например:

>> syms a t

>> t=csgn(a^2)*a^2

Undefined function or variable "csgn".

>> simplify((a^4)^(1/2))

>> simplify((a^8)^(1/4))

>> simplify((a^9)^(1/3))

1. Ануфриев, И.Е. Самоучитель MatLab 5.3/6.х / И.Е. Ануфриев. - СПб.: БХВ-Петербург, 2002. - 736 с.

2. Берман, Г.Н. Сборник задач по курсу математического анализа / Г.Н. Берман, И.Г. Араманович, А.Ф. Бермант и др. - М.: Наука, 1966. - 456 с.

3. Бермант, А.Ф. Краткий курс математического анализа для втузов / А.Ф. Бермант, И.Г. Араманович. - М.: Наука, 1966. - 736 с.

4. Гультяев, А. Визуальное моделирование в среде MatLab / А. Гультяев. - СПб.: Питер, 2001. - 553 с.

5. Демидович, Б.П. Задачи и упражнения по математическому анализу для втузов / Б.П. Демидович, Г.С. Бараненков, В.А. Ефименко и др. - М.: Наука, 1966. - 472 с.

6. Лазарев, Ю.Ф. MatLab 5.х / Ю.Ф. Лазарев. - Киев: BHV, 2000. - 388 с.

7. Мартынов, Н.Н. Matlab 5.х: вычисления, визуализация, программирование / Н.Н. Мартынов, А.П. Иванов. - М.: КУДИЦ-ОБРАЗ, 2000. - 336 с.

8. Куринной, Г.Ч. Математика: Справочник / Г.Ч. Куринной. - Харьков: Фолио; Ростов на Дону: Феникс, 1997. - 463 с.

9. Пискунов, Н.С. Дифференциальное и интегральное исчисление для втузов в 2 томах / Н.С. Пискунов. - М.: Наука, 1966. - 2 т. - 312 с.

10. Фихтенгольц, Г.М. Курс дифференциального и интегрального исчисления в 3 томах / Г.М. Фихтенгольц. - М.: Государственное изд-во физико-математической литературы, 1959. - т. 1-3.

11. Сайты http://www/informika.ru, htt://www.softline.ru, http://matlab.ru.

«Омская государственная медицинская академия»

Министерства здравоохранения и социального развития Российской Федерации

на тему: применение определенного интеграла

в медицине

выполнила студент 1 курса

отделения Лечебное дело

группа 102Ф

Глушнева Н.А.

Введение

Выдающийся итальянский физик и астроном, один из основателей точного естествознания, Галилео Галилей (1564-1642) говорил, что "Книга природы написана на языке математики". Почти через двести лет родоначальник немецкой классической философии Кант (1742-1804) утверждал, что "Во всякой науке столько истины, сколько в ней математики". Наконец, ещё через почти сто пятьдесят лет, практически уже в наше время, немецкий математик и логик Давид Гильберт (1862-1943) констатировал: "Математика - основа всего точного естествознания".

Леонардо Да Винчи говорил: «Пусть не читает меня в основах моих тот, кто не математик». Пытаясь найти математическое обоснование законов природы, считая математику могучим средством познания, он применяет ее даже в такой науке, как анатомия.

Математика всем нужна. И медикам тоже. Хотя бы для того, чтобы грамотно прочитать обычную кардиограмму. Без знания азов математики нельзя быть докой в компьютерной технике, использовать возможности компьютерной томографии... Ведь современная медицина не может обходиться без сложнейшей техники.

На сегодня невозможно изучение гемодинамики- движения крови по сосудам без применения интеграла.

В течение длительного времени катетеризация правых отделов сердца являлась единственным методом исследования, позволявшим оценивать состояния правых отделов сердца, получать характеристики внутрисердечного кровотока, определять давление в правых отделах сердца и легочной артерии.
Основное преимущество эхокардиографического исследования (ЭхоКГ) заключается в том, что неинвазивно в реальном режиме времени можно оценить размеры и движение сердечных структур, получить характеристики внутрисердечной гемодинамики, определить давление в камерах сердца и легочной артерии. Доказана хорошая сопоставимость результатов ЭхоКГ-исследования с данными, полученными при катетеризации сердца.
ЭхоКГ-исследование позволяет не только выявить наличие легочной гипертензии, но и исключить ряд заболеваний, которые являются причиной вторичной легочной гипертензии: пороки митрального клапана, врожденные пороки сердца, дилатационная кардиомиопатия, хронический миокардит.

Однако, ближе к практике. Для начала найдем линейную скорость кровотока

Изменение линейной скорости кровотока в различных сосудах

Это путь, проходимый в единицу времени частицей крови в сосуде. Линейная скорость в сосудах разного типа различна (см. рисунок) и зависит от объемной скорости кровотока и площади поперечного сечения сосудов. В практической медицине линейную скорость кровотока измеряют с помощью ультразвукового и индикаторного методов, чаще определяют время полного кругооборота крови, которое равно 21-23 с.

Для его определения в локтевую вену вводят индикатор (эритроциты, меченные радиоактивным изотопом, раствор метиленового синего и др.) и отмечают время его первого появления в венозной крови этого же сосуда в другой конечности.

Для начала вспомним, что интеграл- это математический объект, который возник исторически на основе потребности решения различных прикладных задач физики и техники. Это и физические приложения определенного интеграла: вычисление пути материальной точки, движущейся по прямолинейной или криволинейной траектории по скорости ее движения.

Те физические величины, которые определяются с помощью интеграла - как правило, называются интегральными, а те величины, через которые выражаются интегральные величины - дифференциальными. Например, скорость тела в точке - это дифференциальная характеристика тела, а масса тела - интегральная.

Дифференциальные характеристики определяются значением в точке и как правило различны в различных точках пространства.

Интегральные характеристики всегда выражают свойства объектов, относящиеся к целой области пространства. Например, масса характеризует тело целиком как некоторый объект занимающий область пространства. Путь, пройденный телом - это тоже интегральная характеристика, поскольку она характеризует целую траекторию, состоящую из множества точек, а скорость различна в каждой точке траектории и характеризует каждую точку в отдельности.

Возникает вопрос - как же вычислить интегральную скорость для целого сосуда (артерии или вены) , зная линейную скорость кровотока. Очень просто: нужно

  • разбить всю область пространства на отдельные достаточно малые части (например взаимно перпендикулярными плоскостями). В этом случае мы получим внутри тела множество мелких кубиков, внутри которых дифференциальную характеристику условно считаем неизменной, постоянной.
  • умножить значение дифференциальной характеристики внутри каждого кубика на значение объема этого кубика и просуммировать такие произведения. На этом этапе мы получаем интегральную сумму. Интегральная сумма не равна интегралу в точности, но может служить его приближенным значением.
  • перейти к пределу интегральной суммы, когда объем кубиков разбиения тела стремится к нулю. На этом этапе мы получаем точное значение интеграла линейной скорости.

Ниже приведены расчеты ударного объема (ударный объём сердца (син.: систолический объем крови, систолический объем сердца, ударный объем крови) - объем крови (в мл), выбрасываемый желудочком сердца за одну систолу)- одной из основных величин в ЭХОкг, рассчитываемых при помощи интеграла линейной скорости кровотока.

а - Схемы расчета ударного объема, а - с использованием уравнения непрерывности потока, б - с использованием уравнения непрерывности потока при наличии значительной митральной регургитации.

VTI = V cp ЕТ,

где CSA - площадь поперечного сечения, VTI - интеграл линейной скорости потока, V cp - средняя скорость потока в выносящем тракте левого желудочка, ЕТ - время выброса.

В том случае, когда присутствует гемодинамически значимая митральная регургитация (более 2-й степени), тотальный ударный объем левого желудочка рассчитывается по формуле:

TSV = FSV + RSV,

[Интеграл линейной скорости (FVI, или VTI)] = [Время кровотока (ET)] х [Средняя скорость кровотока (Vmean)];

Сердечный выброс может быть определен по интегралу линейной скорости аортального и легочного потока.

В завершении хочу добавить, что моя работа рассчитана не на математика, от и до разбирающегося в интегрировании, а на любого человека, проявившего интерес к применению интеграла в медицине. Поэтому я старалась сделать ее максимально доступной для восприятия и интересной даже ребенку.

Список литературы:

  1. Болезни сердца и сосудов http://old.consilium-medicum. com/media/bss/06_02/42.shtml
  2. Гемодинамика http://ru.wikipedia.org/wiki/% D0%93%D0%B5%D0%BC%D0%BE%D0%B4% D0%B8%D0%BD%D0%B0%D0%BC%D0%B8% D0%BA%D0%B0
  3. Знак интеграла http://ru.wikipedia.org/wiki/% C7%ED%E0%EA_%E8%ED%F2%E5%E3% F0%E0%EB%E0
  4. Медицинский консилиум http://www.consilium-medicum. com/article/7144
  5. Основные уравнения - Сердце http://serdce.com.ua/osnovnye- uravneniya
  6. Практическое руководство по ультразвуковой диагностике http://euromedcompany.ru/ ultrazvuk/prakticheskoe- rukovodstvo-po-ultrazvukovoj- diagnostike

Владимир 2002 год

Владимирский государственный университет, Кафедра общей и прикладной физики

Вступление

Символ интеграла введен с 1675г., а вопросами интегрального исчисления занимаются с 1696г. Хотя интеграл изучают, в основном, ученые–математики, но и физики внесли свой вклад в эту науку. Практически ни одна формула физики не обходится без дифференциального и интегрального исчислений. Поэтому, я и решила исследовать интеграл и его применение.

История интегрального исчисления

История понятия интеграла тесно связана с задачами нахождения квадратур. Задачами о квадратуре той или иной плоской фигуры математики Древней Греции и Рима называли задачи на вычисление площадей. Латинское слово quadratura переводится как “придание квадратной формы”. Необходимость в специальном термине объясняется тем, что в античнoe время (и позднее, вплоть до XVIII столетия) еще не были достаточно развиты представления о действительных числах. Математики оперировали с их геометрическими аналогами или скалярными величинами, которые нельзя перемножать. Поэтому и задачи на нахождение площадей приходилось формулировать, например, так: «Построить квадрат, равновеликий данному кругу». (Эта классическая задача “о квадратуре круга” круга» не может, как известно, быть решена с помощью циркуля и линейки.)

Символ ò введен Лейбницем (1675 г.). Этот знак является изменением латинской буквы S (первой буквы слова summ a). Само слово интеграл придумал Я. Б е р у л л и (1690 г.) Вероятн о, оно происходит от латинского integro , которое переводится как приводи ь в прежнее состояние, восстанавливать. (Действительно, операция интегрирования восстанавливает функцию, дифференцированием которой получена подынтегральная функция.) Возможно, происхождение термина инт грал иное: слово integer означает целый.

В современной литературе множество всех первообразных для функции f(х) называется также неопределенным интегралом. Это понятие выделил Лейбниц, который заметил, что в е первообразные функции отличаются на произвольн ю постоянн ю. b

называют определенным интегралом (обо начение ввел К. Фурье (1768-1830), но пределы интегрирования указывал уже Эй лер).

Многие значительные достижения математиков Древней Греции в решении задач на нахождение квадратур (т. е. вычисление площадей) плоских фигур, а также кубатур (вычисление объемов) тел связаны с применением метода исчерпывания, предложенным Евдоксом Книдским (ок. 408 - ок. 355 до н.э.). С помощью этого метода Евдокс доказал, например, что площади двух кругов относятся как квадраты их диаметров, а объем конуса равен 1/3 объёма цилиндра, имеющего такие же основание и высоту.

Метод Евдокса был усовершенствован Архимедом. Основные этапы, характеризующие метод Архимеда: 1) доказывается, что площадь круга меньше площади любого описанного около него правильного многоугольника, но больше площади любого вписанного; 2) доказывается, что при неограниченном удвоении числа сторон разность площадей этих многоугольн иков стремится к нулю; 3) для вычисления площади круга остается найти значение, к которому стремится отношение площади правильного многоугольника при неограниченном удвоении числа его сторон.

С помощью метода исчерпывания, целого ряда других остроумных соображений (в том числе с привлечением моделей механики) Архимед решил многие задачи. Он дал оценку числа p (3.10/71

Архимед предвосхитил многие идеи интегрального исчисления. (Добавим, что практически и первые теоремы о пределах были доказаны им.) Но потребовалось более полутора тысяч лет, прежде чем эти идеи нашли четкое выражение и были доведены до уровня исчисления.

Математики XVII столетия, получившие многие новые результаты, учились на трудах Архимеда. Активно применялся и другой метод - метод неделимых, который также зародился в Древней Греции (он связан в первую очередь с атомистическими воззрениями Демокрита). Например, криволинейную трапецию (рис. 1, а) они представляли себе составленной из вертика ьных отрезков длиной f(х), которым тем не менее приписывали площадь, равн ю бесконечно малой величине f(х) . В соответствии с таким пониманием искомая площадь считалась равной сумме

бесконечно большого числа бесконечно малых площадей. Иногда даже подчеркивалось, что отдельные слагаемые в этой сумме - нули, но нули особого рода, которые, сложенные в бесконечном числе, дают вполне определенную положительную сумму.

На такой кажущейся теперь по меньшей мере сомнительной основе И. Кеплер (1571-1630) в своих сочинениях “Новая астрономия”.

(1609 г.) и «Стереометрия винных бочек» (1615 г.) правильно вычислил ряд площадей (например, площадь фигуры ограниченной эллипсом) и объемов (тело разрезалось на 6ecконечно тонкие пластинки). Эти исследования были продолжены итальянскими математиками Б. Кавальери (1598-1647) и Э.Торричелли (1608-1647). Сохраняет свое значение и в наше время сформулированный Б. Кавальери принцип, введенный им при некоторых дополнительных предположениях.

Пусть требуется найти площадь фигуры, изображенной на рисунке 1,б, где кривые, ограничивающие фигуру сверху и снизу, имеют уравнения y = f(x) и y=f(x)+c.

Представляя фигуру составленной из «неделимых», по терминологии Кавальери, бесконечно тонких столбиков, замечаем, что все они имеют общую длину с. Передвигая их в вертикальном направлении, можем составить из них прямоугольник с основанием b-а и высотой с. Поэтому искомая площадь равна площади полученного прямоугольника, т.е.

S = S1 = c (b – а).

Общий принцип Кавальери для площадей плоских фигур формулируется так: Пусть прямые некоторого пучка параллельных пересекают фигуры Ф1 и Ф2 по отрезкам равной длины (рис. 1,в). Тогда площади фигур Ф1 и Ф2 равны.

Аналогичный принцип действует в стереометрии и оказывается полезн м при нахождении объемов.

В XVII в. были сделаны многие открытия, относящиеся к интегральному исчислению. Так, П.Ферма уже в 1629 г. задачу квадратуры любой кривой у = хn, где п - целое (т.е по существу вывел формулу ò хndx = (1/n+1)хn+1), и на этой основе решил ряд задач на нахождение центров тяжести. И. Кеплер при выводе своих знаменитых законов движения планет фактически опирался на идею приближенного интегрирования. И. Барроу (1630-1677), учитель Ньютона, близко подошел к пониманию связи интегрирования и дифференцирования. Большое значение имели работы по представлению функций в виде степенных рядов.

Однако при всей значимости результатов, полученных многими чрезвычайно изобретательными математиками XVII столетия исчисления еще не было. Необходимо было выделить общие идеи лежащие в основе решения многих частных задач, а также установить связь операций дифференцирования и интегрирования, дающую достаточно общий алгоритм. Это сделали Ньютон и Лейбниц, открывшие независимо друг от друга факт, известным под названием формулы Ньютона - Лейбница. Тем самым окончательно оформился общий метод. Предстояло еще научится находить первообразные многих функций, дать логические нового исчисления и т. п. Но главное уже было сделано: дифференциальное и интегральное исчисление создано.

Методы математического анализа активно развивались в следующем столетии (в первую очередь следует назвать имена Л. Эйлера, завершившего систематическое исследование интегрирования элементарных функций, и И. Бернулли). В развитии интегрального исчисления приняли участие русские математики М.В.Остроградский (1801-1862), В.Я.Буняковский (1804-1889), П.Л.Ч бышев (1821-1894). Принципиальное значение имели, в частности, результаты Чебышева, доказавшего, что существуют интегралы, не выразимые через элементарные функции.

Строгое изложение теории интеграла появилось только в прошлом веке. Решение этой задачи связано с именами О.Коши, одного из крупнейших математиков, немецкого ученого Б.Римана (1826-1866), французского математика Г.Дарбу (1842-1917).

Ответы на многие вопросы, связанные с существованием площадей и объемов фигур, были получены с созданием К. Жорданом (1838-1922) теории меры.

Решение интегралов - задача легкая, но только для избранных. Эта статья для тех, кто хочет научиться понимать интегралы, но не знает о них ничего или почти ничего. Интеграл... Зачем он нужен? Как его вычислять? Что такое определенный и неопределенный интегралы? Если единственное известное вам применение интеграла – доставать крючком в форме значка интеграла что-то полезное из труднодоступных мест, тогда добро пожаловать! Узнайте, как решать интегралы и почему без этого никак нельзя обойтись.

Изучаем понятие "интеграл"

Интегрирование было известно еще в Древнем Египте. Конечно, не в современном виде, но все же. С тех пор математики написали очень много книг по этой теме. Особенно отличились Ньютон и Лейбниц , но суть вещей не изменилась. Как понять интегралы с нуля? Никак! Для понимания этой темы все равно понадобятся базовые знания основ математического анализа. Сведения о , необходимые и для понимания интегралов, уже есть у нас в блоге.

Неопределенный интеграл

Пусть у нас есть какая-то функция f(x) .

Неопределенным интегралом функции f(x) называется такая функция F(x) , производная которой равна функции f(x) .

Другими словами интеграл – это производная наоборот или первообразная. Кстати, о том, как читайте в нашей статье.


Первообразная существует для всех непрерывных функций. Также к первообразной часто прибавляют знак константы, так как производные функций, различающихся на константу, совпадают. Процесс нахождения интеграла называется интегрированием.

Простой пример:

Чтобы постоянно не высчитывать первообразные элементарных функций, их удобно свести в таблицу и пользоваться уже готовыми значениями.

Полная таблица интегралов для студентов


Определенный интеграл

Имея дело с понятием интеграла, мы имеем дело с бесконечно малыми величинами. Интеграл поможет вычислить площадь фигуры, массу неоднородного тела, пройденный при неравномерном движении путь и многое другое. Следует помнить, что интеграл – это сумма бесконечно большого количества бесконечно малых слагаемых.

В качестве примера представим себе график какой-нибудь функции. Как найти площадь фигуры, ограниченной графиком функции?


С помощью интеграла! Разобьем криволинейную трапецию, ограниченную осями координат и графиком функции, на бесконечно малые отрезки. Таким образом фигура окажется разделена на тонкие столбики. Сумма площадей столбиков и будет составлять площадь трапеции. Но помните, что такое вычисление даст примерный результат. Однако чем меньше и уже будут отрезки, тем точнее будет вычисление. Если мы уменьшим их до такой степени, что длина будет стремиться к нулю, то сумма площадей отрезков будет стремиться к площади фигуры. Это и есть определенный интеграл, который записывается так:


Точки а и b называются пределами интегрирования.


Бари Алибасов и группа "Интеграл"

Кстати! Для наших читателей сейчас действует скидка 10% на

Правила вычисления интегралов для чайников

Свойства неопределенного интеграла

Как решать неопределенный интеграл? Здесь мы рассмотрим свойства неопределенного интеграла, которые пригодятся при решении примеров.

  • Производная от интеграла равна подынтегральной функции:

  • Константу можно выносить из-под знака интеграла:

  • Интеграл от суммы равен сумме интегралов. Верно также для разности:

Свойства определенного интеграла

  • Линейность:

  • Знак интеграла изменяется, если поменять местами пределы интегрирования:

  • При любых точках a , b и с :

Мы уже выяснили, что определенный интеграл - это предел суммы. Но как получить конкретное значение при решении примера? Для этого существует формула Ньютона-Лейбница:

Примеры решения интегралов

Ниже рассмотрим несколько примеров нахождения неопределенных интегралов. Предлагаем самостоятельно разобраться в тонкостях решения, а если что-то непонятно, задавайте вопросы в комментариях.


Для закрепления материала посмотрите видео о том, как решаются интегралы на практике. Не отчаиваетесь, если интеграл не дается сразу. Обратитесь в профессиональный сервис для студентов, и любой тройной или криволинейный интеграл по замкнутой поверхности станет вам по силам.