Метализационные методы. Дуговая металлизация Что представляет собой электродуговая металлизация

Процесс электродуговой металлизации известен давно, и начиная с 50-х годов прошлого столетия, широко применяется для антикоррозионной защиты металлоконструкций. При электродуговой металлизации используется косвенная электрическая дуга, которая горит между двумя токоведущими проволоками. Расплавленные капли электродного металла распыляются в направлении детали потоком сжатого воздуха или защитного газа. По мере плавления проволоки подаются в зону горения электрической дуги двумя парами подающих роликов. Схема процесса представлена на рис. 3.5 .

Плавление электродов происходит в основном за счет энергии, выделяемой дугой в зоне приэлектродных пятен. Среднемассовая температура жидкого металла, распыляемого струей газа, находится в пределах от температуры плавления до температуры кипения. Такой значительный разогрев присадочного материала приводит к существенным потерям легирующих элементов вследствие угара. Устойчивый процесс распыления соответствует режимам горения дуги без коротких замыканий, что обеспечивается наличием динамического равновесия между средней скоростью плавления и скоростью подачи электродов.

Рис. 3.5
1 - проволочные электроды; 2 - подающие ролики; 3 - изоляторы; 4 - воздуходувная трубка; 5 - деталь

При таком режиме на торце электродов сначала происходит накапливание расплавленного металла, а затем его распыление газовым потоком. Наряду с периодическим выбросом порций металла из межэлектродного промежутка при металлизации наблюдается также непрерывное струйное стекание перегретого металла с поверхности электродов. Размеры напыляемых частиц при электродуговой металлизации составляют примерно 100 мкм, что соответствует массе частицы 1,4-10-9 кг. Максимальный размер частиц, за редким исключением, не превышает 200 мкм. Металл, покинувший электроды, продолжает дробиться под воздействием газодинамических сил воздушной струи. Причем это диспергирование во многом зависит как от давления транспортирующего газа, так и от свойств расплавленного металла, в том числе от его перегрева.

Электродуговую металлизацию проводят при давлении сжатого воздуха или защитного газа 0,5-0,6 МПа. Сила тока при электродуговой металлизации колеблется в пределах:

  • от 35 до 100 А для легкоплавких металлов (алюминия и цинка);
  • от 70 до 200 А для сталей и сплавов на основе железа и меди.

Напряжение изменяется от 20 до 35 В. Производительность при напылении цинка составляет до 32 кг/ч, алюминия - до 9 кг/ч.

Скорость движения частиц металла в газовом потоке колеблется от 120 до 300 м/с. Это определяет кратковременность их переноса на поверхность детали (время полета составляет тысячные доли секунды) и значительную кинетическую энергию, которая в момент соударения с поверхностью детали переходит в тепловую и вызывает дополнительный разогрев зоны контакта. Удар в момент соприкосновения с поверхностью детали вызывает уплотнение металлизованного слоя и снижает его пористость до 10-20 %.

Электродуговой металлизацией можно получить слои в широком диапазоне толщин от 10 мкм до 1,5 мм для тугоплавких металлов и 3,0 мм для легкоплавких. Производительность электродуговой металлизации составляет 3-20 кг/ч.

Металлизованный слой может наноситься на наружные и внутренние поверхности конструкций под углом распыления расплавленного металла по отношению к поверхности детали от 45° до 90°. Для получения высокого качества покрытия струю распыленного металла направляют перпендикулярно к обрабатываемой детали и выдерживают расстояние от сопла металлизато-ра до изделия (детали) не более 150-200 мм. В табл. 3.4 представлены данные о влиянии дистанции распыления на характеристики металлизованного слоя.

Таблица 3.4 . Физико-механические свойства покрытия при разной дистанции металлизации.

С целью повышения эффективности нанесения покрытий электрической дугой ее интенсифицируют, обдувая потоком газа, накладывая на нее электромагнитные поля или применяя разряды с очень высокой плотностью тока на электродах. Высокую плотность тока получают уменьшением сечения электродов или применением сильноточных разрядов. Уплотнение металлизованных слоев обеспечивают, совмещая процесс напыления и дробеструйной обработки. Дробь направляется так, что ее удары вызывают пластическую деформацию только что напыленного слоя.

Поверхность, предназначенная под металлизацию, должна быть очищена от грязи, масел, ржавчины. Подготовку поверхности чаще всего производят дробеструйной (пескоструйной) обработкой. Перед обработкой поверхности обезжиривают. Для обеспечения удовлетворительной адгезии время между операциями подготовки и металлизации не должно превышать 2-х ч. Для снижения термических внутренних напряжений процесс металлизации следует вести с перерывами между отдельными проходами, не допуская перегрева металлизируемой поверхности.

Вначале металл наносят на участки детали с резкими переходами, углами, галтелями, уступами, а затем осуществляют металлизацию всей поверхности, равномерно наращивая металл. Требуемые размеры, качество отделки и правильную геометрическую форму поверхностей, покрытых распыленным металлом, получают при окончательной механической обработке.

Металлизацию с последующей окраской применяют для защиты стальных металлоконструкций, относят к комбинированными покрытиям. Срок службы комбинированных покрытий за счет синергизма существенно больше, чем сумма сроков службы каждого слоя в отдельности, поэтому их следует применять для долговременной защиты от коррозии стальных конструкций, которые будут эксплуатироваться в средне- и сильноагрессивных средах внутри зданий, на открытом воздухе и под навесами, а также в жидких органических и неорганических средах. Покрытия, полученные методами электродуговой металлизации, применяют для защиты стальных конструкций и железобетонных опор мостов, топливных резервуаров, трубопроводов, оборудования, используемого в тепловых сетях, нефтяной и химической промышленности.

Присадочные материалы

Выбор материала для нанесения покрытия зависит от условий эксплуатации и основных изнашивающих процессов, протекающих на поверхностях. Основным видом присадочного материала является непрерывный проволочный электрод. Применяют как проволоки сплошного сечения, так и порошковые диаметром от 1,0 до 2,5 мм. Скорость подачи проволоки варьируется от 220 до 850 м/ч.

Проволоки сплошного сечения используются преимущественно для создания покрытий на поверхностях под неподвижные посадки (из малоуглеродистых сталей Св-08, Св-10ГА) и подвижных соединений (из высокоуглеродистых сталей Нп-50, Нп-85 и легированных сталей Нп-30Х13, Нп-40Х13, Нп-60Х3В10Ф). Для получения покрытий с высокой твердостью используют порошковые проволоки.

Для создания антикоррозионных покрытий применяются высоколегированные проволоки на железной основе (Св-08Х18Н8Г2Б, Св-07Х18Н9ТЮ, Св-06Х19Н9Т, Св-07Х19Н10Б, Св-08Х19Н10Г2Б, Св-06Х19Н10М3Т), а также проволоки из цветных металлов (никеля, цинка, меди и др.).

Основными цветными антикоррозионными материалами, наносимыми способом электродуговой металлизации на стальные конструкции и изделия, являются цинк, алюминий и их сплавы. Цинковые покрытия являются коррозионностойкими в морской воде и в условиях морской атмосферы. Наибольшее влияние на скорость коррозии цинка в индустриальной атмосфере промышленных городов оказывает содержание в ней окислов серы, а также других веществ (например, хлора и паров соляной кислоты), образующих с цинком гигроскопические соединения.

Электродуговая металлизация представляет собой процедуру послойного нанесения на нагретые изделия металла малой толщины. Высота электродуги при этом минимальна, а расплавленная проволока рассеивается газовым потоком, направленным вдоль оси присадочного материала. Технология разработана еще в 50-х годах XX века и широко используется для предохранения конструкций различного назначения от коррозии.

Для выполнения металлизации применяется косвенная электродуга, горящая между токопроводящими проволочными элементами. Металл электрода, нагретый до капельного состояния, распыляется на обрабатываемое изделие струей защитного газа либо сжатого воздуха. По мере расплавления присадки одновременно поступают в область дуги двумя парами роликов.

Антикоррозионная защита способом металлизации характеризуется:

  • малыми энергозатратами;
  • высокой производительностью и эффективностью расхода распыляемой присадки;
  • возможностью создания покрытия толщиной до 15 мм без ограничения по размерам деталей;
  • небольшое температурное воздействие на основной материал обрабатываемых изделий;
  • надежность, простота обслуживания оборудования;
  • возможность полной или частичной автоматизации процесса, создания поточных линий.

Металлизация при помощи электродуги имеет и недостатки:

  • ограниченность ассортимента присадочного материала;
  • содержание в покрытии большого количества оксидов, снижающих ударную прочность;
  • недостаточно высокую прочность сцепления с основным материалом;
  • высокую пористость слоев, препятствующую постоянной эксплуатации изделий в подверженных коррозии средах без дополнительной защиты.

Технология процесса обработки металла

Поступление расплавляемых присадочных проволок сечением 1,5–2 мм производится сквозь отверстия в горелке. Между присадочными стержнями возбуждается электродуга, являющаяся причиной их расплавления.

Из сопла, расположенного посередине прибора для металлизации, выходит сжатый воздух, подхватывающий мелкие расплавленные капли металла и переносящий их на обрабатываемую поверхность.

Для распыления и переноса расплава обычно используется сжатый воздух. Если в качестве присадочного материала для электродугового покрытия используется нержавеющая сталь либо алюминиевые сплавы, то применяется азот.

Интенсивность поступления разжиженной присадки при электродуговой металлизации подбирается в соответствии с требуемым режимом дуги, влияющим на расстояние между проволочными элементами.

Электродуговые металлизаторы имеют следующие стандартные режимы работы:

  • напряжение – 24–35 В;
  • сила тока – 75–200 А;
  • давление подаваемого воздуха – 0,5 МПа;
  • выработка аппаратов – 30–300 г/мин.

Процесс электродуговой металлизации стабилен при постоянном токе, позволяет создавать напыления с тонкозернистой структурой.

На рисунке указаны основные элементы металлизатора:

  • 1 – дюзы;
  • 2 – точка проведения присадочного материала;
  • 3 – точка выхода сжатого воздуха.

Подлежащая металлизации поверхность предварительно очищается от масел, загрязнений, очагов коррозии. Подготовку крупных изделий выполняют с применением песко- или дробеструйной очистки после предварительного обезжиривания.

Для повышения сцепления временной период между окончанием подготовительных работ и выполнением электродугового покрытия должен составлять не более 120 минут.

Для минимизации температурных напряжений и недопущения перегрева изделий послойная металлизация осуществляется с перерывами для остывания и формирования покрытия.

Металл сначала наносится на участки изделия в местах резких переходов, галтелей, углов, выступов или уступов. Затем выполняется металлизация основных площадей при условии равномерного нанесения присадки за один либо несколько проходов.

Необходимый вид, размеры и формы изделия получают после электродугового распыления при завершающей обработке.

Присадочные материалы

В качестве присадочного материала преимущественно применяется проволочный стержень непрерывной длины. Присадки поставляются двух видов:

  • сплошного сечения;
  • порошковые.

Интенсивность поступления назначается 220–850 м/ч.

Для создания защитного слоя металлических элементов с последующей их посадкой либо при неподвижном соединении применяется сплошная проволочная нить. Для создания поверхностей повышенной твердости при электродуговой металлизации должны использоваться стержни порошковые.

Для формирования антикоррозийных слоев используются высоколегированные присадочные материалы на основе железа, проволоки из цветных металлов.

Для нанесения методом электродуговой металлизации чаще всего используются алюминий, цинк и соединения на их основе.

Присадка от катушек поступает через два гибких шланга к металлизатору. Кассеты и пульт располагаются на тумбе 3 и могут разворачиваться по вертикальной оси.

Электродуговой аппарат для металлизации ЭДМ-3 обладает малой массой (1,8 кг), а возможность разворота кассеты и управляющего блока по горизонтали делают его удобным для применения.

Электродуговой аппарат иной конструкции ЭМ-6 подлежит установке на суппорт токарного станка, на вал которого устанавливается напыляемая деталь. Между металлизатором и изделием крепится стальная воронка. На ее поверхность наносится порошкообразный графит, жидкое калиевое либо натриевое стекло. Благодаря такому решению эффективность применения присадочного материала повышается на 10–15%.

Распыляющая система электродугового аппарата модернизирована благодаря установке конусовидной воздушной дюзы. Это позволяет сократить угол раскрывания конуса, увеличить энергию распылительного потока и наносить слои под давлением 0,45–0,5 МПа.

Конструктивные элементы электродугового прибора для металлизации ЭМ-6:

  1. Металлизатор.
  2. Конусообразная дюза.
  3. Подлежащее обработке изделие.
  4. Патрон.
  5. Устройство, используемое для перемещения суппорта станка вместе с электродуговым металлизатором в продольном направлении.

Гальванический метод

Гальванический метод применяют для нанесения покрытий из комплексных сульфитных растворов трехвалентного хрома. Добавки некоторых элементов, в частности марганца (по данным К.Н. Пименовой), позволяют повысить твердость и коррозионную стойкость железохромовых осадков. С точки зрения технологичности, гальваническое осаждение в условиях массового производства громоздко, многооперационно, требует тщательного соблюдения условий охраны труда и техники безопасности. Покрытия имеют недостаточную адгезию к основе, растрескиваются при деформации. При нанесении толстых покрытий на конструкционные стали, процесс значительно усложняется и требует применения специальных электролитов, солей, суспензий с последующим отжигом, прессованием и покрытием другими металлами.

На рис.1.1 приведена схема гальванического метода нанесения покрытий.

Рис.1.1

Метод плакирования

Метод плакирования используют в основном для получения защитных покрытий на прокате. Есть несколько разновидностей этого метода получения покрытий: заливкой, совместной пластической деформацией, наплавкой или электросваркой. В 60-е годы разработан метод сварки взрывом, суть которого состоит в следующем. Пластину плакировочного материала располагают под некоторым углом к покрываемой поверхности, на пластину накладывают вспомогательную пластину с взрывчатым веществом. После взрыва образуется прочное соединение под действием значительного давления, тангенциального перемещения и благодаря очистке соединяемых поверхностей от окисных пленок.

Метализационные методы

Метализационные методы распространены при получении покрытий из сплавов Fe-Cr. В зависимости от способа расплавления материала различают электродуговое, газопламенное, и плазменное распыление.

Электродуговая металлизация

Сущность метода электродуговой металлизации заключается в нагреве (до плавления) электрической дугой в распылителе сходящихся проволок. Капли расплавленного металла сдуваются затем газовым потоком в направлении подложки. Покрытие металлом поверхности, как правило, производится в несколько проходов. Чаще всего применяется напыление алюминием, цинком.

На рис.1.2 приведена схема работы металлизатора.

Рис.1.2

В электрометаллизаторе установлены направляющие, через которые непрерывно производится подача двух распыляемых проволок. Между концами этих проволок возбуждается электрическая дуга. В центральной части электрометаллизатора имеется сопло, через которое подается сжатый воздух.

Струя сжатого воздуха отрывает с проволок-электродов частицы расплавленного металла и уносит их к напыляемой поверхности. Электрометаллизатор может работать как на постоянном, так и на переменном токе. При использовании переменного тока дуга горит неустойчиво и сопровождается большим шумом. При постоянном токе характер работы является устойчивым, напыленный материал имеет мелкозернистую структуру, производительность напыления высокая. Поэтому в настоящее время для дугового напыления используют источники постоянного электрического тока.

Для напыления обычно используют проволоку диаметром 0,8; 1,0; 1,6 и 2,0 мм. Металлизационный слой наносится на открытые поверхности конструкций, при возможности направления струи расплавленного металла под углом от 45 до 90°. Поверхность, предназначенная под металлизацию, должна быть подготовлена, очищена от грязи, масел, ржавчины. Подготовку поверхности под металлизацию производят дробеструйной (пескоструйной) обработкой. Поверхности, подлежащие такой обработке, не должны иметь заусенцев, острых кромок, сварочных брызг, остатков флюса. Перед обработкой поверхности обезжиривают. Для обеспечения адгезии (и соответственно высокого качества металлизационного покрытия) время между операциями подготовки и напыления не должно превышать 2-х часов. Для снижения термических внутренних напряжений процесс металлизации следует вести с перерывами между отдельными проходами не допуская перегрева металлизируемой поверхности.

Развитие современной техники и технологий позволяют защитить металлические конструкции, сооружения, изделия и различные детали от воздействия атмосферных осадков, агрессивных сред и увеличить срок их службы в несколько раз. Одним из эффективных способов защиты металлов от коррозии является металлизация распылением (пламенная, электродуговая). Процесс металлизации известен давно, и начиная с 50-х годов прошлого столетия, широко применяется для антикоррозионной защиты металлоконструкций. Это доказанная и отработанная технология защиты от коррозии, восстановления изношенных и поврежденных поверхностей стальных конструкций и изделий. Процесс металлизации распылением заключается в непрерывном плавлении металла, распылении его на мельчайшие частицы и нанесении на специально подготовленную поверхность.

Попадая на металлизируемую поверхность, частицы деформируются, нагромождаются друг на друга и образуют металлизационное покрытие слоистого строения.

Рис.1.3

Металлизацию с последующей окраской, используемые для защиты стальных металлоконструкций, называют комбинированными покрытиями, представляющие собой двухслойные системы, нижний слой которых получен металлизацией, а верхний - нанесением лакокрасочного покрытия. Срок службы комбинированных покрытий за счет синергизма существенно больше, чем сумма сроков службы каждого слоя в отдельности, поэтому их следует применять для долговременной защиты от коррозии стальных конструкций, которые будут эксплуатироваться в средне - и сильноагрессивных средах внутри зданий, на открытом воздухе и под навесами, а также в жидких органических и неорганических средах.

При металлизации сцепление частиц с основанием происходит вследствие шероховатости поверхности и под действием молекулярных сил и носит в основном механический характер. Металлизация в некоторых случаях единственный и незаменимый способ предохранения конструкций от коррозии и разрушения. Металлизационные покрытия можно наносить как в заводских условиях, так и на монтажной площадке.

Основными антикоррозионными материалами, наносимыми способом металлизации на стальные конструкции и изделия, являются цинк, алюминий и их сплавы. Цинковые покрытия являются коррозионностойкими в морской воде и в условиях морской атмосферы. Наибольшее влияние на скорость коррозии цинка в индустриальной атмосфере промышленных городов оказывает содержание в ней окислов серы, а также других веществ (например, хлора и паров соляной кислоты), образующих с цинком гигроскопические соединения.

Алюминий по своим химическим свойствам очень активен, но в присутствии окислителей покрывается защитной пленкой, резко понижающей его химическую активность. Коррозионная стойкость алюминия зависит от условий, в которых происходит коррозия. В сильно загрязненной атмосфере алюминий корродирует во много раз быстрее, чем в чистом воздухе. Алюминий стоек в горячей и мягкой воде.

Сплавы цинка и алюминия (Zn/Al 15, Zn/Al 5) создают покрытия стойкие к любым атмосферам, что объясняется быстрым заполнением пор продуктами коррозии цинка. Контакт алюминия с цинком безопасен, так как электродный потенциал цинка отрицательнее алюминия, следовательно, цинк, растворяясь, электрохимически защищает алюминий.

Покрытия из алюминия находят также широкое применение для защиты железа и стали против газовой коррозии. Цинк и алюминий образуют плотный слой продуктов коррозии, по объему значительно больший, чем металл, из которого они образовались. Цинковое покрытие находящееся длительное время в воде, покрывается плотным слоем окиси карбоната или гидроокиси цинка, поры закупориваются продуктами коррозии. Такое покрытие со временем значительно увеличивает коррозионную стойкость.


Рис.1.4

Антикоррозийные покрытия наносят, главным образом, металлизационными аппаратами проволочного типа (установки для нанесения порошковых материалов используются реже).

Принцип действия металлизационных аппаратов проволочного типа основан на том, что металл в виде проволоки непрерывно подают в аппарат, там он плавится газовым пламенем или электрической дугой, и затем распыляется сжатым воздухом на мельчайшие частицы, которые наносятся на поверхность.

Основными причинами применения металлизационных покрытий являются:

1. высокая антикоррозионная стойкость металлизационных покрытий;

2. отсутствие деформации изделий;

3. мобильность металлизационных установок и возможность нанесения защитных покрытий в полевых условиях;

4. высокая адгезионная прочность металлизационных покрытий (в сравнении лакокрасочными покрытиями);

5. высокие пластические характеристики металлизационных покрытий;

6. высокая производительность процесса и возможность значительного

7. сокращения затрат времени на напыление. Например, при силе тока 750 А

можно напылять стальное покрытие с производительностью 36 кг/ч, что превышает в несколько раз производительность газопламенного напыления.

По сравнению с газопламенным напылением металлизация позволяет получать более прочные покрытия, которые лучше соединяются с основой. При использовании в качестве электродов проволок из двух различных металлов можно получить покрытие из их сплава. Эксплуатационные затраты электрометаллизатора довольно небольшие. При напылении покрытия распылением двух электродов из разнородных материалов желательно использовать такие электрометаллизаторы, которые бы позволяли производить отдельную регулировку скорости подачи каждого электрода. Основными недостатком металлизации являются:

1. большая пористость (до 20%);

2. значительные потери металла при распылении. Для повышения плотности и уменьшения проницаемости покрытий используются разнообразные пропитки, стойкие к воздействию агрессивных сред, а также окраска;

3. перегрев и окисление напыляемого материала при малых скоростях подачи распыляемой проволоки;

4. большое количество теплоты, выделяющейся при горении дуги, приводит к значительному выгоранию легирующих элементов, входящих в

5. напыляемый сплав (например, содержание углерода в материале покрытия снижается на 40-60%, а кремния и марганца-на 10-15%). Это необходимо иметь в виду и применять для напыления проволоку, содержащую повышенное количество легирующих элементов.

Электродуговая металлизация – процесс нанесения покрытия, при котором для нагрева/расплава проволочного материала используется электричество. Постоянный ток различной полярности подается на две расходные проволоки, благодаря чему зажигается дуга, происходит расплавление проволок и отделяемые частицы материалы потоком сжатого воздуха переносятся на поверхность напыления.
Использование постоянного тока позволяет стабилизировать дуговой разряд и тщательно контролировать параметры напыления.

Рис. 1. Электродуговая металлизация

Особенности
Электродуговая металлизация характеризуется отличной, по сравнению с другими технологиями, производительностью, высоким КПД. Помимо этого, оборудования для электродуговой металлизации отличается простотой использования, неприхотливостью использования, невысокими требования к инфраструктуре подключения, что позволяет ее использовать как в условиях цеха со стационарными линиями электричества и сжатого воздуха, так и в условиях вне цеха, где достаточно дополнительно использовать широко распространенные промышленные компрессора и электрогенераторы.
Материалы для электродуговой металлизации производятся в виде проволок, в том числе и порошковых.
Электродуговая металлизация предполагает использование электрической энергии для расплавления материала. Отсутствие открытого пламени и горения, как такого, позволяют применять электродуговую металлизацию в закрытых пространствах. Широко известно применение электродуговой металлизации для напыления внутренних поверхностей цистерн хранения и перевозки пищевых и нефтепродуктов, балластных танков; допускается применение металлизации и внутри вентилируемых шахт и т.д.
Спектр используемых материалов ограничивается обязательным наличием в подаваемом материале проводящих элементов. Электродуговая металлизация не применима для нанесения полимерных, керамических и других непроводящих материалов.

Применение
Наиболее распространенным использованием электродуговой металлизации является нанесение легкоплавких материалов (Zn, Al, их сплавы). Системы покрытий на основе цинка, алюминия, сплавов на их основе а также добавления магния титана и других элементов характеризуются низким электрохимическим потенциалом, что позволяет использовать их в целях защиты от коррозии конструкционных сталей.
Такие покрытия предотвращают коррозию не только тем, что изолируют стальные поверхности от коррозионного воздействия окружающей среды как лакокрасочные материалы. Отрицательный, по отношению к стали электродный потенциал гальванически защищает поверхность от коррозии даже в случае локальных повреждений покрытия. Кроме того, при применении таких покрытий в принципе невозможно развитие подпленочной коррозии, что очень часто происходит при использовании лакокрасочных материалов.
Еще одно существенное преимущество металлизационных покрытий заключается в высокой адгезии металлических покрытий. Причем с течением времени адгезия только возрастает за счет взаимной диффузии металлов, тогда как любое лакокрасочное покрытие рано или поздно теряет адгезию и отслаивается ввиду принципиальной разнородности материалов.


Рис.2
. Нанесение антикоррозионного покрытия на зону переменной смачиваемости морской платформы.

Помимо антикоррозионных покрытий, электродуговая металлизация может применяться для нанесения износостойких покрытий.
Использование специально разработанных порошковых проволок подразумевает трехстадийный процесс образования покрытия: сначала от энергии металлизатора расплавляется оболочка порошковой проволоки, плавление представляет собой эндотермическую реакцию; выделяющееся при плавлении оболочки тепло проплавляет шихтовую смесь, наполняющую шнуровой материал.
Электродуговая металлизация, в отличие от широко применимого для нанесения износостойких покрытий высокоскоростного напыления, обладает большей производительностью и мобильность, что делает ее отличной альтернативой для создания износостойких покрытий, при этом нанесение покрытий ЭДМ значительно дешевле, однако отличительной особенностью от HVOF-покрытий является высокая пористость, что может в некоторых случаях привести к коррозии, а также меньший уровень адгезии.

Питание дуги может осуществляться переменным или постоянным током. При использовании постоянного тока дуга горит непрерывно и устойчиво, поэтому по сравнению с переменным током процесс плавления более стабильный, обеспечивается высокая дисперсность частиц наносимого металла и плотность создаваемых ими покрытий.


Поделитесь работой в социальных сетях

Если эта работа Вам не подошла внизу страницы есть список похожих работ. Так же Вы можете воспользоваться кнопкой поиск


Электродуговая металлизация

Сущность процесса заключается в том, что напыляемый металл расплавляется электрической дугой, распыляется на частицы 10—100 мкм и переносится на восстанавливаемую поверхность струей газа.

Рис. 4.49. Схема электродуговой металлизации: 1 — напыляемая поверхность; 2 — направляющие наконечники; 3 — воздушное сопло; 4 — подающие ролики; 5 — проволока; 6 — газ.

Электрическая дуга возбуждается между двумя электродными проволоками 5, которые изолированы одна от другой и равномерно подаются роликовыми механизмами 4 со скоростью 0,6—1,5 м/мин через направляющие наконечники 2. Если проволоки изготовлены из разных материалов, то материал покрытия представляет собой их сплав. Расстояние от сопла до детали составляет 80—100 мм.

Одновременно по воздушному соплу 3 в зону дуги поступает сжатый воздух или инертный газ под давлением 0,4—0,6 МПа, который распыляет расплавленный металл и переносит его на поверхность детали 1. Большая скорость движения частиц металла (120—300 м/с) и незначительное время полета, исчисляемое тысячными долями секунды, обуславливают в момент удара о деталь их пластическую деформацию, заполнение частицами пор поверхности детали, сцепление частиц между собой и с деталью, в результате чего на ней образуется сплошное покрытие. Последовательным наслаиванием частиц металла можно получить покрытие толщиной более 10 мм (обычно 1,0—1,5 мм для тугоплавких и 2,5—3,0 мм для легкоплавких материалов).

Питание дуги может осуществляться переменным или постоянным током. При использовании постоянного тока дуга горит непрерывно и устойчиво, поэтому по сравнению с переменным током процесс плавления более стабильный, обеспечивается высокая дисперсность частиц наносимого металла и плотность создаваемых ими покрытий.

Для электродугового напыления применяют электрические металлизаторы: станочные ЭМ-6, МЭС-1, ЭМ-12, ЭМ-15 (при значительном объеме восстановительных работ), которые монтируются обычно на токарных станках или специальном оборудовании, или ручные (переносные) ЭМ-3, РЭМ-ЗА, ЭМ-9, ЭМ-10 (при небольшом объеме работ).

Присадочным материалом при металлизации в зависимости от назначения покрытия обычно служит электродная проволока (стальная, медная, латунная, бронзовая, алюминиевая и др.) (табл. 4.8) диаметром 1—2 мм. Для получения антифрикционных покрытий применяют биметаллическую свинцово-алюминиевую проволоку с массовым соотношением этих металлов 1:1.

Проволока должна быть гладкой, чистой и мягкой. Жесткую стальную проволоку отжигают при температуре 800—850 °С с последующим медленным охлаждением вместе с печью. Для уменьшения жесткости проволоки из меди и ее сплавов необходим нагрев до 550—600 °С с последующим охлаждением в воде.

Основные преимущества электродуговой металлизации — высокая по сравнению с другими методами производительность (до 50 кг напыляемого материала в час) и несложное технологическое оборудование.

К ее недостаткам относятся значительное (до 20 %) выгорание легирующих элементов и повышенное окисление металла. Для устранения этих недостатков в обоснованных случаях для распыления расплавленного металла вместо сжатого воздуха применяют природный газ или продукты сгорания углеводородного топлива, исключающие взаимодействие частиц металла с воздухом (активированный способ металлизации). При этом благодаря науглероживанию и закалке частиц металла повышается твердость напыленного слоя.

Таблица 4.8

Материал электродной проволоки для различных покрытий

Высокочастотная металлизация

Этот метод основан на расплавлении присадочного материала за счет индукционного нагрева током высокой частоты (200—300 кГц) и распылении расплавленного металла струей сжатого воздуха. В качестве присадочного материала используются проволока и стержни из углеродистой стали диаметром 3—6 мм. Покрытия наносятся высокочастотными металлизаторами МВЧ-1, МВЧ-2 и др.

Присадочный материал 6 расплавляется в индукторе 4 металлизатора, который подключен к генератору тока высокой частоты. Присадочный материал непрерывно подается роликами 7 через направляющую втулку 8 и благодаря наличию концентратора 3 плавится на небольшой длине. Сжатый воздух, поступающий из канала 5 в зону плавления, распыляет расплавленный материал и переносит его частицы в виде газометаллической струи 2 на напыляемую поверхность 1.

Рис. 4.50. Схема напыления высокочастотным методом: 1 — напыляемая поверх" ность; 2 — газометаллическая струя; 3 — концентратор тока; 4 — индуктор; 5 — воз душный канал; б— проволока; 7 — подающие ролики; 8 — направляющая втулка

По сравнению с электродуговой при высокочастотной металлизации снижаются выгорание легирующих элементов и пористость покрытия, а также повышается производительность процесса.

Покрытия, нанесенные высокочастотной металлизацией, за счет благоприятных условий плавления присадочного материала имеют лучшие структуру и физико-механические свойства, чем при других методах, кроме плазменной металлизации. Эти преимущества обусловлены, в частности, тем, что выгорание основных химических элементов снижается в 4—6 раз, насыщенность покрытия окислами уменьшается в 2—3 раза, а это увеличивает прочность сцепления и уменьшает расход присадочного материала. Недостаток данного метода металлизации — необходимость в более сложном технологическом оборудовании.

Плазменная металлизация

Это прогрессивный способ нанесения покрытий, при котором расплавление и перенос материала на восстанавливаемую поверхность осуществляется струей плазмы. Плазма — это сильно ионизированное состояние газа, когда концентрация электронов и отрицательных ионов равна концентрации положительно заряженных ионов. Плазменную струю получают, пропуская плазмообразующий газ через электрическую дугу при ее питании от источника постоянного тока напряжением 80—100 В.

Переход газа в ионизированное состояние и распад его на атомы сопровождается поглощением значительного количества энергии, которая выделяется при охлаждении плазмы в результате ее взаимодействия с окружаемой средой и напыляемой деталью. Это обуславливает высокую температуру плазменной струи, которая зависит от силы тока, вида и расхода газа. В качестве плазмообразующего газа обычно применяют аргон или азот и реже водород или гелий. При использовании аргона температура плазмы составляет 15000-30000°С, а азота — 10 000-15 000 °С. При выборе газа следует учитывать, что азот дешевле и менее дефицитен, чем аргон, но чтобы зажечь в нем электрическую дугу, требуется значительно большее напряжение, что обуславливает повышенные требования к электробезопасности. Поэтому иногда при зажигании дуги используют аргон, для которого напряжение возбуждения и горения дуги меньше, а в процессе напыления — азот.

Покрытие формируется за счет того, что поступающий в струю плазмы наносимый материал расплавляется и переносятся потоком горячего газа на поверхность детали. Скорость полета частиц металла составляет 150—200 м/с при расстоянии от сопла до поверхности детали 50—80 мм. Благодаря более высокой температуре наносимого материала и большей скорости полета, прочность соединения плазменного покрытия с деталью выше, чем при других способах металлизации.

Высокая температура и большая мощность по сравнению с другими источниками тепла является основным отличием и преимуществом плазменной металлизации, обеспечивающим значительное повышение производительности процесса, возможность расплавлять и наносить любые жаростойкие и износостойкие материалы, включая твердые сплавы и композиционные материалы, а также оксиды, бориды, нитриды и др., в различных сочетаниях. Благодаря этому можно формировать многослойные покрытия с различными свойствами (износостойкие, хорошо прирабатывающиеся, жаростойкие и др.). Наиболее качественные покрытия получаются при применении самофлюсующихся наплавочных материалов.

Плотность, структура и физико-механические свойства плазменных покрытий зависят от наносимого материала, дисперсности, температуры и скорости столкновения переносимых частиц с восстанавливаемой деталью. Последние два параметра обеспечиваются за счет управления плазменной струей. Свойства плазменных покрытий существенно повышаются при последующем их оплавлении. Такие покрытия эффективны при ударных и высоких контактных нагрузках.

Принцип работы и устройство плазмотрона иллюстрирует рис. 4.51. Плазменную струю получают, пропуская плазмообразующий газ 7 через электрическую дугу, создаваемую между вольфрамовым катодом 2 и медным анодом 4 при подключении к ним источника тока.

Катод и анод разделены между собой изолятором 3 и непрерывно охлаждаются жидкостью б (желательно дистиллированной водой). Анод выполнен в виде сопла, конструкция которого обеспечивает обжатие и определенное направление плазменной струи. Обжатию способствует также электромагнитное поле, возникающее вокруг струи. Поэтому ионизированный плазмообразующий газ выходит из сопла плазмотрона в виде струи небольшого сечения, что обеспечивает высокую концентрацию тепловой энергии.

Рис. 4.51. Схема процесса плазменного напыления: 1 — порошковый дозатор; 2— катод; 3 — изоляционная прокладка; 4 — анод; 5 — транспортирующий газ; 6 — охлаждающая жидкость; 7 — плазмообразующий газ

Наносимые материалы используются в виде гранулированных порошков с размером частиц 50—200 мкм, шнуров или проволоки. Порошок может подаваться в плазменную струю вместе с плазмообразующим газом или из дозатора 1 транспортирующим газом 5 (азотом) в сопло газовой горелки, а проволоку или шнур вводят в плазменную струю ниже сопла плазменной горелки. Перед использованием порошок следует просушить и прокалить для уменьшения пористости и повышения сцепляемости покрытия с деталью.

Защита плазменной струи и находящихся в ней расплавленных частиц металла от взаимодействия с воздухом может осуществляться потоком инертного газа, который должен охватывать плазменную струю. Для этого в плазмотроне концентрично основному предусматривается дополнительное сопло, через которое подается инертный газ. Благодаря ему исключается окисление, азотирование и обезуглероживание напыляемого материала.

В рассмотренном примере источник питания подключен к электродам плазмотрона (закрытая схема подключения), поэтому электрическая дуга служит только для создания плазменной струи. При применении наносимого материала в виде проволоки источник питания может быть подключен также и к ней. В этом случае кроме плазменной струи образуется плазменная дуга, которая также участвует в расплавлении прутка, благодаря чему мощность плазмотрона существенно возрастает

Современные плазменные наплавочные установки имеют электронные системы регулирования параметров процесса, оснащаются манипуляторами и роботами. Это повышает производительность и качество процесса напыления, улучшает условия работы обслуживающего персонала.

Газопламенная металлизация

Газопламенный метод нанесения покрытий заключается в расплавлении наносимого материала высокотемпературным пламенем, распылении и переносе частиц металла на предварительно подготовленную поверхность детали струей сжатого воздуха или инертного газа. Температура пламени горючих газов в смеси с кислородом находится в пределах 2000—3200 °С. Для газопламенной металлизации применяют материалы в виде проволоки, порошков и шнуров. Шнуры состоят из порошкообразного наполнителя в оболочке из материала, который полностью выгорает в газовом пламени.

Расплавление металла производится восстановительным пламенем, что позволяет по сравнению с электродуговой металлизацией уменьшить выгорание легирующих элементов и обезуглероживание материала и тем самым повысить качество покрытия. Преимуществом газопламенной металлизации является также относительно небольшое окисление металла при его распылении на мелкие частицы, что обеспечивает более высокую плотность и прочность покрытия. Недостаток этого метода — невысокая производительность напыления (2—4 кг металла за час) и более высокая стоимость наплавочных материалов.

В зависимости от назначения детали, ее материала и условий эксплуатации при восстановлении используют различные методы газопламенной металлизации.

Газопламенное напыление из прутковых материалов . Присадочная проволока 3 расплавляется пламенем 7 смеси горючего газа (ацетилена или пропан-бутана) с кислородом, которые подаются в смесительную камеру 1 соответственно по каналам 5 и 2. По каналу 6 поступает сжатый воздух или инертный газ, который распыляет расплавленный металл в виде насыщенной частицами металла струи 8 и переносит их на напыляемую поверхность 9.

Горелки могут быть ручными и машинными. В проволочных горелках используется проволока диаметром от 1,5 до 5,0 мм.

Рис. 4.52. Схема металлизации проволочным материалом; 1 — смесительная камера; 2 — канал подвода кислорода; 3 — проволока; 4 — направляющая; 5 — канал подвода ацетилена; 6 — воздушный канал; 7 — пламя; 8 — струя газометаллическая; 9 — напыляемая поверхность

Газопламенное напыление порошковых материалов . Этот метод металлизации получил широкое применение благодаря тому, что использование порошковых материалов обеспечивает его дополнительные преимущества. К ним относятся:

— высокая гибкость процесса, что выражается в возможности нанесения покрытий на различные по габаритам изделия;

— отсутствие ограничений на сочетания материалов покрытия и детали, что позволяет восстанавливать детали более широкой номенклатуры и назначения;

— меньшее влияние процесса нанесения покрытия на свойства материала детали и др.

Газопламенному напылению подвергаются изношенные посадочные поверхности валов и корпусных деталей.

В зависимости от назначения и материала восстанавливаемой детали, условий ее эксплуатации, требований к покрытию и его дополнительной обработке применяют методы газопламенного нанесения покрытий : без оплавления и с оплавлением , которое может выполняться как в процессе напыления, так и после него.(см. табл.)

В зависимости от используемого метода напыления применяются соответствующие порошковые материалы (см. табл.).

Газопламенное напыление без последующего оплавления применяется для восстановления недеформированных деталей с износом до 2,0 мм и сохраненной структурой основного металла, которые в процессе эксплуатации не подвергаются ударам, знакопеременным нагрузкам и высокотемпературному нагреву. Предварительно деталь подогревают горелкой при избытке ацетилена, чтобы предотвратить окисление поверхности. Стальные детали подогревают до 50—100 °С, бронзовые и латунные — до 300 °С.

Напыление без оплавления осуществляется в два этапа: вначале наносится подслой (порошок ПТ-НА-01), а затем основной слой (порошок ПТ-19Н-01 или др.). Основной слой наносят за несколько проходов, при этом толщина покрытия должна быть не больше 2,0 мм на сторону. Фасонные и плоские детали напыляют вручную, а детали типа «вал» — вручную или на механизированных установках с автоматической подачей металлизатора.

Оплавление необходимо для металлизационных покрытий, работающих при ударных нагрузках, так как из-за невысокой прочности сцепления с основным металлом неоплавленные покрытия могут растрескиваться и отслаиваться. Покрытия, подлежащие оплавлению, должны содержать материалы, хорошо смачивающие поверхность детали и обладающие свойством самофлюсования, например порошковые сплавы на основе никеля.

Жидкая фаза, образующаяся при оплавлении покрытия, способствует интенсификации диффузионных процессов между ним и металлом детали. В результате повышаются прочность сцепления, ударная вязкость, износостойкость и плотность материала покрытия. Для оплавления применяют различные источники тепла (ацетиленокислородное пламя, плазменную дугу, токи высокой частоты, лазерный луч, печи с защитно-восстановительной атмосферой и др.). Температура оплавления не должна превышать 1100 °С. Технология оплавления должна исключать перегрев и отслаивание покрытия. После оплавления деталь охлаждают вместе с соответственно нагретой печью.

Напыление с последующим оплавлением применяется для восстановления деталей типа «вал» при толщине покрытия до 2,5 мм. Оплавление выполняется сразу же после напыления. Напыленный участок нагревают до расплавления покрытия, в результате чего оно приобретает блестящую поверхность. Твердость оплавленных покрытий зависит от марки порошка. Они устойчивы против коррозии, абразивного изнашивания, действия высокой температуры и могут применяться для деталей, работающих при знакопеременных и контактных нагрузках.

Схема газопорошкового напыления без оплавления приведена на рис. 4.53.

Рис. 4.53. Схема газопламенного напыления порошкового материала с помощью транспортирующего газа: 1 — смесь кислорода с горючим газом; 2 — транспортирующий газ; 3 — напыляемый порошок; 4 — сопло; 5 — факел; 6 — покрытие; 7 — подложка

Напыление с одновременным оплавлением (газопорошковая наплавка) используется для восстановления деталей с местным износом до 3—5 мм, работающих при знакопеременных и ударных нагрузках, изготовленных из чугуна, конструкционных, коррозионностойких сталей и др. материалов.

Основой установки для напыления порошковых покрытий с одновременным оплавлением является типовая сварочная горелка, дополненная устройством для подачи порошка в газовое пламя. Установки для напыления различаются степенью механизации (ручные и машинные), мощностью (очень малой, малой, средней и большой мощности), способом подачи порошка (инжекторный и безинжекторный).

Технологический процесс восстановления деталей с газопламенным нанесением покрытий в общем случае включает следующие операции:

— предварительный нагрев восстанавливаемой детали до 200—250 °С;

— нанесение подслоя, как основы для наложения основных слоев;

— нанесение основного слоя покрытия с необходимыми физико-механическими свойствами;

— механическая обработка нанесенного слоя и контроль покрытия.

При прочих равных условиях предварительный подогрев детали и нанесение подслоя влияют на прочность сцепления покрытия с основным металлом. Она зависит также от способа подготовки поверхности к напылению, использования терморегулирующих порошков, эффективной мощности пламени, способа и параметров процесса распыления, наличия в материале покрытия поверхностно активных добавок, применяемого оборудования и др. факторов.

Обработка напыленных покрытий твердостью до 40HRCэ осуществляется резанием твердосплавными инструментами и инструментами из сверхтвердых материалов. Токарную обработку рекомендуется выполнять в следующей последовательности: снятие фасок у краев покрытия; проточка нанесенного слоя от середины покрытия к концам детали до устранения неровностей нанесенного слоя или окончательная обработка восстановленной поверхности с требуемой точностью и шероховатостью.

Обработку напыленных поверхностей производят также шлифованием на соответствующих станках (круглошлифовальных, внутри шлифовальных, плоскошлифовальных). В этом случае обязательно применение охлаждающей жидкости, например, 2—3%-ного раствора кальцинированной соды. Шлифование проводится непосредственно после нанесения покрытий или после предварительной токарной обработки. Шлифование напыленных покрытий твердостью до 60HRCэ выполняется кругами из карбида кремния или белого электрокорунда, а при твердости более 60HRCэ — алмазными кругами.

Напыление покрытий методом детонации

Процесс металлизации при этом виде напыления осуществляется за счет энергии, выделяющейся при детонации— процессе химического превращения взрывчатого вещества, который происходит в очень тонком слое и распространяется по взрывчатому веществу в виде особого вида пламени со сверхзвуковой скоростью (в газовых смесях 1000—3500 м/с).

В установках для металлизации в качестве взрывчатого вещества используется смесь кислорода и ацетилена, детонация которой представляет разновидность горения газового топлива. Выделяющаяся при этом потенциальная энергия газовой смеси создает ударную волну и поддерживает в ней высокую температуру (свыше 5000 °С) и давление (несколько десятков ГПа). Источником детонации обычно является тепловое воздействие на газовую смесь (электрическая искра).

Поступающие в зону детонации порошковые материалы разогреваются до температуры свыше 3500 °С и перемещаются вместе с продуктами детонации с высокой скоростью, которая на выходе из ствола составляет 800—900 м/с. Таким образом, материал покрытия выбрасывается взрывной волной на обрабатываемую поверхность со сверхзвуковой скоростью.

На практике детонационные покрытия формируются за счет энергии периодически создаваемых взрывов смеси кислорода и ацетилена. Установка (пушка) для детонационного напыления (рис. 4.57) содержит: камеру сгорания, выполненную совместно с водоохлаждаемым стволом 5; запальное устройство (электрическая свеча) 2 с источником питания 3; устройство 1 подачи кислорода и ацетилена, порошковый дозатор 4.

Рис. 4.57. Схема установки для напыления методом детонации: 1 — устройство для подачи смеси газов; 2 — электрическая свеча; 3 — источник питания; 4 — порошковый дозатор; 5 — ствол; 6 — подложка; 7 — деталь; 8 — покрытие; 9 — порошок

Напыляемая деталь 6 устанавливается на расстоянии 70—150 мм от края ствола. В процессе нанесения покрытия последовательно происходят: подача кислорода и ацетилена в камеру сгорания; подача из дозатора в потоке азота определенного количества напыляемого порошка; воспламенение электрической искрой смеси кислорода и ацетилена; горение газовой смеси, выстрел порошка из ствола в направлении напыляемой поверхности. Подача порошка и газов в ствол пушки производится автоматически. Защита газовых клапанов от действия взрыва и очистка ствола от продуктов сгорания обеспечивается подачей в него азота.

Описанный цикл повторяется обычно с частотой 3—4 Гц, которая может быть повышена до 15 Гц и более. При каждом взрыве покрытие наносится на ограниченный участок поверхности, поэтому сплошное покрытие формируется за счет перемещения детали относительно пушки. Покрытие формируется из полностью расплавленных частиц порошка или из смеси расплавленных или нерасплавленных частиц. Высокая скорость в момент удара и высокая температура в зоне взаимодействия вызывают приваривание порошка на поверхности детали. Несмотря на высокую температуру продуктов детонации и частиц порошка, покрываемая деталь нагревается до температуры не более 200 °С.

В отличие от газопламенных и плазменных методов детонационные покрытия формируются при более высоких скоростях частиц и наличии более крупных непроплавленных частиц порошка. Первый слой покрытия практически не имеет пор (пористость менее 0,5 %), а образующиеся в нем отдельные поры уменьшаются в объеме или исчезают при формировании последующих слоев.

Детонационные покрытия обладают также высокой прочностью сцепления (до 20 ГПа) с основным металлом. Это обусловлено тем, что, несмотря на низкую общую температуру поверхностного слоя детали (200—250 °С), температура в отдельных точках контакта наносимого и основного металлов достигает температуры плавления стали. Поэтому происходит сплавление и перемешивание этих металлов с образованием прочного соединения.

Детонационными методами напыляют порошки чистых металлов — N i , Al, Mo, окислов, карбидов, нитридов и т.д. Толщина детонационных покрытий обычно составляет 40—220 мкм. Более тонкие покрытия имеют низкую износостойкость. Покрытие состоит из трех зон: переходная зона толщиной 5—30 мкм определяет прочность сцепления покрытия с подложкой; основная зона, толщина которой в зависимости от назначения покрытия составляет 30—150 мкм; поверхностная зона толщиной 10—40 мкм, которая обычно удаляется при обработке.

Технологический процесс детонационного нанесения покрытий включает подготовку напыляемой поверхности и порошка; нанесение и контроль качества покрытия; механическую обработку и контроль качества покрытий после механической обработки.

Для образования прочной связи между материалами детали и покрытия рекомендуется наносить промежуточный слой — подложку. Он необходим при слабой адгезии между покрытием и материалом детали, когда значения коэффициентов термического расширения материалов покрытия и детали существенно различаются, и если деталь работает в условиях переменных температур. Толщина промежуточного слоя составляет 0,05— 0,15 мм. Для его нанесения используются порошки нихрома, молибдена, никель-алюминиевых сплавов, стали 12Х18Н9 и др. Участки поверхности деталей, на которые покрытие не наносится, закрывают экранами из тонких листов металла.

Дистанцию напыления задают в зависимости от материала, размеров и форм детали, материала и необходимой толщины покрытия в пределах 50—200 мм. Необходимую толщину покрытий получают многократным повторением циклов напыления. Смещение детали между двумя циклами не должно превышать 0,5 диаметра отверстия в стволе.

Свойства газотермических покрытий

Взаимодействуя с кислородом воздуха, частицы металла окисляются. Образующаяся окисная пленка разделяет их и препятствует образованию прочных металлических связей частиц с основой и между собой. Из-за значительного количества оксидов и шлаковых включений покрытие имеет неоднородную, пористую структуру . Обычно плотность составляет 80—97 %. Покрытия из А l 2 O 3 и Zr0 2 имеют пористость 10—15 %. Покрытия из самофлюсующихся сплавов на основе никеля могут иметь пористость менее 2 %.

Металлическое покрытие получается достаточно хрупким, с низким пределом прочности на растяжение и низкой усталостной прочностью напыленного материала (сопротивление на разрыв для сталей в среднем составляет 10—12 МПа). Поэтому покрытие не увеличивает прочность детали, а ее усталостная прочность даже снижается, что связано, в частности, с образованием дополнительных концентраторов напряжений на поверхности детали при ее подготовке к металлизации. В этой связи не следует применять металлизацию для восстановления деталей с малым запасом прочности.

Покрытие характеризуется относительно слабой прочностью сцепления с основным металлом и частиц между собой, так как без применения специального дополнительного воздействия она определяется молекулярными силами взаимодействия контактирующих между собой участков и чисто механическим сцеплением напыляемых частиц с неровностями поверхности детали. Только в некоторых локальных точках отдельные частицы могут свариваться с металлом детали. Поэтому, например, прочность сцепления покрытия (МПа) при электрометаллизации составляет 10—25, при газопламенной — 12—28, при плазменной до 40. В этой связи металлизация не применяется для восстановления деталей, работающих при высоком напряжении на сдвиг (зубья шестерен, кулачки и др.), подвергающихся ударным нагрузкам, а также небольших по площади поверхностей, воспринимающих значительные нагрузки (резьба, канавки и т.д.).

К специальным методам повышения сцепления покрытия с основой относятся: предварительный подогрев детали до температуры 200—300 °С, нанесение промежуточного слоя (подслоя) из легкоплавких или трудноплавких материалов, оплавление покрытия.

Напыленные покрытия хорошо работают на сжатие . Например, временное сопротивление сжатию стального покрытия составляет 800—1200 МПа, что выше, чем у чугуна.

Твердость металлизированного слоя обычно выше твердости исходного металла из-за закалки наносимого материала в процессе металлизации, наклепа переносимых частиц металла при ударе о поверхность и наличия в сформированном слое окисных пленок.

Однако его износостойкость не связана с твердостью и при сухом трении может быть в 2—3 раза меньше, чем у металла детали, поэтому металлизированные покрытия нельзя применять в сопряжениях, работающих без смазки или с периодически подаваемой смазкой. Однако при наличии смазки металлизированные покрытия обеспечивают более низкий коэффициент трения в сопряжениях и большую износостойкость деталей. Это связано с тем, что благодаря пористости металлизированный слой впитывает масло до 9 % своего объема. Таким образом, наблюдается эффект самосмазывания покрытия. При недостаточной подаче смазки или при ее временном прекращении заедание наступает значительно позже по сравнению с неме-таллизированной поверхностью. Значительной износостойкостью обладают плазменные покрытия из тугоплавких материалов, что обусловлено их физико-механическими свойствами.

В условиях абразивного износа высокую стойкость имеют покрытия из самофлюсующихся сплавов на основе никеля и А l 2 O 3

В частности, износостойкость покрытий из самофлюсующихся сплавов на основе никеля (СНГН) в 3,5—4,6 раза выше износостойкости закаленной стали 45. Хорошие антифрикционные свойства для подшипников скольжения имеют покрытия из оловянно-свинцово-медных псевдосплавов.

Для создания коррозионно-стойких покрытий обычно используют алюминий, цинк, медь, хромо-никелевые и др. сплавы. Вследствие пористости покрытий их толщина не должна быть меньше 0,2 мм для цинка; 0,23 мм — для алюминия; 0,18 мм —для меди; 0,6—1,0 мм для нержавеющей стали.

Припекание порошковых покрытий

Припекание — это процесс получения металлического покрытия на поверхности детали, включающий нанесение на нее слоя порошка и нагрев их до температуры, обеспечивающей спекание порошкового материала и образование прочной диффузионной связи с деталью. В основу этого метода положены технологические приемы порошковой металлургии.

Для получения на поверхности детали прочного слоя, имеющего надежное сцепление с основой, необходимо активирование поверхности детали, порошка или обоих компонентов. Наиболее доступными и эффективными являются следующие виды активирования : химическое, термическое (ускоренный нагрев и введение присадок, снижающих температуру плавления в местах контакта порошка и детали), силовое (создание надежного контакта между порошком и деталью).

При химическом активировании в шихту вводятся активные присадки, обычно в виде дисперсного порошка (бора, кремния, фосфора, никеля и др.), равномерно распределенного в наносимом порошке. Они уменьшают окисление металла и разрушают окисные пленки.

Термическое активирование заключается в ускоренном нагреве с целью активизации диффузионных процессов и создания кратковременно в локальных зонах температуры, превышающей температуру плавления. При этом для снижения температуры появления жидкой фазы применяют присадки (как правило, совместно с химическим активированием), образующие легкоплавкую эвтектику. Наиболее эффективным и технологичным является нагрев в индукторе токами высокой частоты. Благодаря кратковременности нагрева до температуры, обеспечивающей припекание, уменьшается окисление порошка и детали, что исключает необходимость применения защитно-восстановительных сред или вакуума.

Силовое активирование необходимо в тех случаях, когда без надлежащего прилегания частиц порошка друг к другу и к поверхности детали невозможно создать условия, необходимые для припекания. Силовое активирование способствует повышению плотности покрытия и существенно ускоряет диффузионные процессы между частицами порошка и деталью. На практике для силового активирования применяют: статическое приложение нагрузки с одновременным нагревом, спекание с приложением вибраций, давление с использованием центробежных сил.

Одновременное применение химического, термического и силового активирования позволяет получать наиболее качественные покрытия.

Электроконтактное припекание . На практике обычно применяется метод электроконтактного припекания при силовом активировании. Процесс нанесения покрытия в этом случае осуществляется следующим образом. На поверхность детали подается порошок, который прижимается к ней электродом (обычно роликовым) контактной сварочной машины. Под действием импульсов электрического тока порошок нагревается до температуры 0,9— 0,95 температуры его плавления. Нагревание происходит за счет энергии, выделяемой при прохождении электрического тока через активное сопротивление, которое образуется контактами между частичками порошка, поверхностью детали и электрода.

Под действием давления со стороны электрода пластичные частички порошка деформируются, спекаются между собой и поверхностью детали. Покрытие образуется в результате бездиффузионного процесса схватывания и диффузионных процессов спекания и сваривания.

Процесс припекания обеспечивается при следующих параметрах: сила тока до 30 кА, напряжение 1—6 В, продолжительность импульса тока 0,01— 0,1 с, давление на порошок до 100 МПа.

Метод электроконтактного припекания, обладая высокой производительностью и низкой энергоемкостью, обеспечивает прочность сцепления нанесенного слоя порошка с деталью 150—200 МПа, создает в детали малую зону термического влияния, не требует применения защитной атмосферы, не сопровождается светоизлучением и газовыделением. Для придания покрытию необходимых показателей пористости, твердости и износостойкости применяют легированные порошки.

К недостаткам данного метода следует отнести нестабильность свойств покрытия по длине детали при традиционной (цилиндрической) форме электрода (ролика), что обусловлено неравномерным нагреванием порошка в пределах его ширины. Если под средней частью ролика, где оказываемое на порошок давление максимально, возможен его перегрев до расплавления, то под крайними участками температура нагрева может быть недостаточной для качественного припекания, что может быть причиной выкрашивания нанесенного слоя при эксплуатации.

Неравномерность нагрева порошка в этом случае обусловлена его сыпучестью, из-за которой плотность слоя порошка и, следовательно, его электрическое сопротивление по ширине ролика переменны. Для стабилизации нагрева порошка по ширине ролика, его наружную контактную поверхность выполняют вогнутой.

Все более широкое применение в промышленности получает разработанный в ИНДМАШе НАНБ способ припекания, при котором силовое активирование осуществляется центробежными силами, а порошок и деталь в процессе припекания разогревают индуктивным методом.

Существенным преимуществом данного способа припекания является то, что благодаря действию центробежных сил на каждую частицу порошка обеспечивается качественное формирование покрытия одновременно по всей длине поверхности детали. Кроме того, за счет совмещения во времени нагрева и формования покрытия, данный процесс припекания отличается высокой производительностью при минимальном окислении поверхности детали и порошка.

Индукционным центробежным припеканием наносят антифрикционные и износостойкие покрытия на внутренние, наружные и торцовые поверхности цилиндрических деталей в широком диапазоне диаметров. Для этого применяют специальные центробежные установки. Вращение детали обычно производят вокруг горизонтальной оси при наружном расположении индуктора, что позволяет получать равномерную толщину покрытия по длине детали и наносить покрытия в отверстиях небольшого диаметра.

По типовому технологическому процессу центробежного индукционного припекания в отверстии детали типа «втулка» ее помещают в защитную стальную оболочку, в отверстие засыпают смесь порошка и флюса, закрывают отверстие с обоих торцов детали антипригарными прокладками и крышками.

Собранное таким образом устройство закрепляют на шпинделе центробежной установки, обеспечив предварительно необходимое ее позиционирование относительно индуктора. Затем шпиндель приводят во вращение и включают цепь питания индуктора. Температуру нагрева детали контролируют соответствующей системой.

После спекания порошкового материала и припекания покрытия индуктор отключают, сохраняя вращение шпинделя. Вращение прекращают при охлаждении детали до 350—600 °С, после чего устройство снимают с установки и охлаждают его до естественной температуры. Полученное покрытие обрабатывают до требуемого размера.