УЗО: устройство, виды, подключение с землей и без, причины срабатывания. Защита от токов утечки: УЗО и дифавтомат Электронная система противодействия затоплению

Схема:

Разработанное автором много лет назад и описанное в статье "Защита от тока" ("Моделист-конструктор", 1981, № 10, с. 29, 30) защитно-отключающее устройство срабатывало при появлении на незаземленном металлическом корпусе защищаемого прибора напряжения более 24 В относительно земли. Сегодня заземление корпусов приборов стало обязательным и представляется более правильным контролировать ток в заземляющем проводе. В случае нарушения изоляции между корпусом и сетью допустимое значение этого тока (4... 10 мА) будет превышено, что и послужит сигналом к отключению неисправного прибора от сети.

Устройство:
Схема устройства защиты, действующего по такому принципу, показана на рис. 1. Вилку ХР1 вставляют в сетевую розетку, оснащенную заземляющим контактом. К розетке XS1 подключают сетевую трехконтактную вилку защищаемого электроприбора. Электронный узел защитного устройства питается от сети через понижающий трансформатор Т2 и мостовой выпрямитель на диодах VD2-VD5. Напряжение питания микросхемы-таймера DA1 и усилителя на транзисторе VT1 стабилизировано с помощью стабилитрона VD6.

В разрыв провода, соединяющего заземляющие контакты вилки ХР1 и розетки XS1 (цепь РЕ) включена первичная обмотка трансформатора тока Т1. Напряжение, пропорциональное протекающему по ней току, выделяется на резисторе R1 и после выпрямления одно-полупериодным выпрямителем на диоде VD1 через усилитель постоянного тока на транзисторе VT1 поступает на вход S таймера DA1.

Если ток утечки отсутствует, напряжение на коллекторе транзистора и на входе таймера имеет высокий, а на выходе таймера (выв. 3) низкий логический уровень. При увеличении тока утечки сверх допустимого значения высокий уровень напряжения на коллекторе VT1 сменится низким, что разрешит работу таймера DA1. На его выходе появятся импульсы положительной полярности, первый из которых откроет тринистор VS1. Реле К1, разомкнув контакты, отключит нагрузку от сети. Мигание светодиода HL1 покажет, что защита сработала. Частота мигания (1 ...5 Гц) зависит от номиналов резисторов R7, R8 и конденсатора Сб.

После устранения утечки тринистор VS1 останется открытым, а контакты реле К1.1 - разомкнутыми. Для того чтобы подать на нагрузку сетевое напряжение, устройство защиты необходимо возвратить в исходное состояние: выключить на некоторое время, нажав на кнопку SB1, и вновь включить, отпустив ее.

Конденсаторы С1 и С4 устраняют ложные срабатывания от кратковременных помех в сети. Цепь R6C5 предотвращает запуск таймера в результате переходных процессов при включении питания. Цепь R9C8VD7 подавляет коммутационные выбросы напряжения на обмотке реле К1.

Печатная плата:

Печатная плата устройства защиты и расположение деталей на ней изображены на рис. 2.

Детали:
Транзистор КТ3102А можно заменить другим той же серии или серий КТ312, КТ315. Импортные аналоги таймера КР1006ВИ1 - NE555 и многие другие с цифрами 555 в обозначении. Тринистор КУ101Б в рассматриваемом устройстве можно заменить одним из серий КУ201, КУ202.
Реле К1 - РЭС47 исполнения РФ4.500.407-01 (сопротивление обмотки - 160...180 Ом). При мощности нагрузки более 1 кВт ее необходимо коммутировать с помощью реле с более мощными контактами, а установленное на плате реле К1 использовать как промежуточное.
Трансформатор тока Т1 изготовлен из согласующего трансформатора от трансляционного громкоговорителя. Магнитопровод трансформатора - стальной Ш8х10. Обмотка с меньшим числом витков удалена, а на ее место намотаны три витка изолированного провода диаметром около 2 мм - зто первичная обмотка трансформатора тока. Бывшая первичная обмотка согласующего трансформатора теперь становится вторичной. Ее выводы подключают к резистору R1. Трансформатор питания Т2 - любой понижающий с первичной обмоткой на 220 Вис двумя соединенными последовательно вторичными обмотками на 9 В, 100 мА или с одной вторичной на 15...18 В. Значение тока срабатывания защиты должно находиться в интервале 4...10 мА. Этого добиваются подборкой резистора R2, а при необходимости, и изменением числа витков первичной обмотки трансформатора тока Т1. Утечку в 10 мА можно имитировать, включив первичную обмотку трансформатора Т1 в сеть 220 В через резистор 22 кОм мощностью не менее 5 Вт.

Разработанное автором много лет назад и описанное в статье "Защита от тока" ("Моделист-конструктор", 1981, № 10, с. 29, 30) защитно-отключающее устройство срабатывало при появлении на незаземленном металлическом корпусе защищаемого прибора напряжения более 24 В относительно земли. Сегодня заземление корпусов приборов стало обязательным и представляется более правильным контролировать ток в заземляющем проводе. В случае нарушения изоляции между корпусом и сетью допустимое значение этого тока (4... 10 мА) будет превышено, что и послужит сигналом к отключению неисправного прибора от сети.



Рис. 1

Схема устройства защиты, действующего по такому принципу, показана на рис. 1. Вилку ХР1 вставляют в сетевую розетку, оснащенную заземляющим контактом. К розетке XS1 подключают сетевую трехконтактную вилку защищаемого электроприбора. Электронный узел защитного устройства питается от сети через понижающий трансформатор Т2 и мостовой выпрямитель на диодах VD2-VD5. Напряжение питания микросхемы-таймера DA1 и усилителя на транзисторе VT1 стабилизировано с помощью стабилитрона VD6.

В разрыв провода, соединяющего заземляющие контакты вилки ХР1 и розетки XS1 (цепь РЕ) включена первичная обмотка трансформатора тока Т1. Напряжение, пропорциональное протекающему по ней току, выделяется на резисторе R1 и после выпрямления одно-полупериодным выпрямителем на диоде VD1 через усилитель постоянного тока на транзисторе VT1 поступает на вход S таймера DA1.

Если ток утечки отсутствует, напряжение на коллекторе транзистора и на входе таймера имеет высокий, а на выходе таймера (выв. 3) низкий логический уровень. При увеличении тока утечки сверх допустимого значения высокий уровень напряжения на коллекторе VT1 сменится низким, что разрешит работу таймера DA1. На его выходе появятся импульсы положительной полярности, первый из которых откроет тринистор VS1. Реле К1, разомкнув контакты, отключит нагрузку от сети. Мигание светодиода HL1 покажет, что защита сработала. Частота мигания (1 ...5 Гц) зависит от номиналов резисторов R7, R8 и конденсатора Сб.

После устранения утечки тринистор VS1 останется открытым, а контакты реле К1.1 - разомкнутыми. Для того чтобы подать на нагрузку сетевое напряжение, устройство защиты необходимо возвратить в исходное состояние: выключить на некоторое время, нажав на кнопку SB1, и вновь включить, отпустив ее.

Конденсаторы С1 и С4 устраняют ложные срабатывания от кратковременных помех в сети. Цепь R6C5 предотвращает запуск таймера в результате переходных процессов при включении питания. Цепь R9C8VD7 подавляет коммутационные выбросы напряжения на обмотке реле К1.



Рис. 2

Печатная плата устройства защиты и расположение деталей на ней изображены на рис. 2. Транзистор КТ3102А можно заменить другим той же серии или серий КТ312, КТ315. Импортные аналоги таймера КР1006ВИ1 - NE555 и многие другие с цифрами 555 в обозначении. Тринистор КУ101Б в рассматриваемом устройстве можно заменить одним из серий КУ201, КУ202.

Реле К1 - РЭС47 исполнения РФ4.500.407-01 (сопротивление обмотки - 160...180 Ом). При мощности нагрузки более 1 кВт ее необходимо коммутировать с помощью реле с более мощными контактами, а установленное на плате реле К1 использовать как промежуточное.

Трансформатор тока Т1 изготовлен из согласующего трансформатора от трансляционного громкоговорителя. Магнитопровод трансформатора - стальной Ш8х10. Обмотка с меньшим числом витков удалена, а на ее место намотаны три витка изолированного провода диаметром около 2 мм - зто первичная обмотка трансформатора тока. Бывшая первичная обмотка согласующего трансформатора теперь становится вторичной. Ее выводы подключают к резистору R1. Трансформатор питания Т2 - любой понижающий с первичной обмоткой на 220 Вис двумя соединенными последовательно вторичными обмотками на 9 В, 100 мА или с одной вторичной на 15...18 В. Значение тока срабатывания защиты должно находиться в интервале 4...10 мА. Этого добиваются подборкой резистора R2, а при необходимости, и изменением числа витков первичной обмотки трансформатора тока Т1. Утечку в 10 мА можно имитировать, включив первичную обмотку трансформатора Т1 в сеть 220 В через резистор 22 кОм мощностью не менее 5 Вт.

Разработанное автором много лет назад и описанное в статье "Защита от тока" ("Моделист-конструктор", 1981, № 10, с. 29, 30) защитно-отключающее устройство срабатывало при появлении на незаземленном металлическом корпусе защищаемого прибора напряжения более 24 В относительно земли. Сегодня заземление корпусов приборов стало обязательным и представляется более правильным контролировать ток в заземляющем проводе. В случае нарушения изоляции между корпусом и сетью допустимое значение этого тока (4... 10 мА) будет превышено, что и послужит сигналом к отключению неисправного прибора от сети.

Схема устройства защиты, действующего по такому принципу, показана на рис. 1. Вилку ХР1 вставляют в сетевую розетку, оснащенную заземляющим контактом. К розетке XS1 подключают сетевую трехконтактную вилку защищаемого электроприбора. Электронный узел защитного устройства питается от сети через понижающий трансформатор Т2 и мостовой выпрямитель на диодах VD2-VD5. Напряжение питания микросхемы-таймера DA1 и усилителя на транзисторе VT1 стабилизировано с помощью стабилитрона VD6.

В разрыв провода, соединяющего заземляющие контакты вилки ХР1 и розетки XS1 (цепь РЕ) включена первичная обмотка трансформатора тока Т1. Напряжение, пропорциональное протекающему по ней току, выделяется на резисторе R1 и после выпрямления одно-полупериодным выпрямителем на диоде VD1 через усилитель постоянного тока на транзисторе VT1 поступает на вход S таймера DA1.

Если ток утечки отсутствует, напряжение на коллекторе транзистора и на входе таймера имеет высокий, а на выходе таймера (выв. 3) низкий логический уровень. При увеличении тока утечки сверх допустимого значения высокий уровень напряжения на коллекторе VT1 сменится низким, что разрешит работу таймера DA1. На его выходе появятся импульсы положительной полярности, первый из которых откроет тринистор VS1. Реле К1, разомкнув контакты, отключит нагрузку от сети. Мигание светодиода HL1 покажет, что защита сработала. Частота мигания (1 ...5 Гц) зависит от номиналов резисторов R7, R8 и конденсатора Сб.

После устранения утечки тринистор VS1 останется открытым, а контакты реле К1.1 - разомкнутыми. Для того чтобы подать на нагрузку сетевое напряжение, устройство защиты необходимо возвратить в исходное состояние: выключить на некоторое время, нажав на кнопку SB1, и вновь включить, отпустив ее.

Конденсаторы С1 и С4 устраняют ложные срабатывания от кратковременных помех в сети. Цепь R6C5 предотвращает запуск таймера в результате переходных процессов при включении питания. Цепь R9C8VD7 подавляет коммутационные выбросы напряжения на обмотке реле К1.

Печатная плата устройства защиты и расположение деталей на ней изображены на рис. 2. Транзистор КТ3102А можно заменить другим той же серии или серий КТ312, КТ315. Импортные аналоги таймера КР1006ВИ1 - NE555 и многие другие с цифрами 555 в обозначении. Тринистор КУ101Б в рассматриваемом устройстве можно заменить одним из серий КУ201, КУ202.

Реле К1 - РЭС47 исполнения РФ4.500.407-01 (сопротивление обмотки - 160...180 Ом). При мощности нагрузки более 1 кВт ее необходимо коммутировать с помощью реле с более мощными контактами, а установленное на плате реле К1 использовать как промежуточное.

Трансформатор тока Т1 изготовлен из согласующего трансформатора от трансляционного громкоговорителя. Магнитопровод трансформатора - стальной Ш8х10. Обмотка с меньшим числом витков удалена, а на ее место намотаны три витка изолированного провода диаметром около 2 мм - зто первичная обмотка трансформатора тока. Бывшая первичная обмотка согласующего трансформатора теперь становится вторичной. Ее выводы подключают к резистору R1. Трансформатор питания Т2 - любой понижающий с первичной обмоткой на 220 Вис двумя соединенными последовательно вторичными обмотками на 9 В, 100 мА или с одной вторичной на 15...18 В. Значение тока срабатывания защиты должно находиться в интервале 4...10 мА. Этого добиваются подборкой резистора R2, а при необходимости, и изменением числа витков первичной обмотки трансформатора тока Т1. Утечку в 10 мА можно имитировать, включив первичную обмотку трансформатора Т1 в сеть 220 В через резистор 22 кОм мощностью не менее 5 Вт.

В.КОНОВАЛОВ, лаборатория "Автоматика и связь", г.Иркутск.
Подавляющее большинство бытовых электроприборов не имеют защитного заземления. Международный стандарт требует наличия дополнительного контакта заземления в сетевых вилках и розетках, но даже с ним не обеспечивается полная безопасность при пользовании электроприборами. А использовать в качестве заземляющей линии нулевой провод сети категорически запрещено, так как обрыв линии может привести к появлению на нулевом проводе сетевого напряжения!

Кроме того, сетевые предохранители и автоматические защитные устройства могут не сработать при небольшом токе утечки, возникающем при касании человеком фазного провода сети, но этого тока вполне достаточно для поражения человека (например, автоматы в электрощитах срабатывают от тока свыше 5 А, а поражающий ток для человека составляет 0,1 А).
Избежать электротравм поможет предлагаемое автоматическое устройство, которое отключит неисправный электроприбор, как только на его корпусе появится напряжение утечки, т.е. раньше, чем сработает защита сети. Защитное устройство электрически не связано с нагрузкой и выполнено как переходник.


Блок-схема устройства защиты (рис.1) содержит:
- транзисторный триггер;
- тиристорное релейное устройство;
- трансформаторы тока;
- стабилизированный источник для питания устройства;
- светодиодную сигнализацию. Работа устройства основана на контроле тока в цепях питания нагрузки. Напряжения на обмотках трансформаторов тока Т1 и Т2, пропорциональные протекающему току нагрузки, алгебраически суммируются, и их сумма при отсутствии утечки равна нулю.
Превышение тока в одной из цепей питания нагрузки (утечка) создает разность магнитных полей в трансформаторах, возникает разностное напряжение, которое выпрямляется мостом VD1, сглаживается конденсатором фильтра С4 и поступает на транзисторный триггер VT1, VT2. Конденсатор С2 на
входе выпрямительного моста VD1 устраняет ложные срабатывания устройства от помех в сети.

В исходном состоянии транзистор VT1 закрыт, a VT2 открыт, напряжение на управляющем электроде тиристора VS1 близко к напряжению на его катоде (-Uпит), и он также закрыт. Реле К1 выключено, поэтому через его нормально замкнутые контакты К1.1 и К1.2 сетевое напряжение подается на нагрузку (подключенный электроприбор).
Когда уровень напряжения на базе VT1 превышает пороговый, т.е. ток утечки становится больше заданного, транзистор VT1 открывается, a VT2 закрывается. Напряжение на управляющем электроде тиристора стремится к нулю (анодному потенциалу), тиристор открывается и включает реле. Контакты реле при этом размыкаются и обесточивают нагрузку. Резистор R3 позволяет установить необходимую чувствительность триггера в зависимости от характеристик транзисторов и трансформаторов.
Поскольку в цепи постоянного тока тиристор остается включенным даже после снятия открывающего напряжения с управляющего электрода, устройство осуществляет блокировку и оставляет нагрузку в отключенном состоянии. Для включения нагрузки после выявления причины утечки и ее устранения нужно отключить и повторно включить устройство защиты.
Схема питания устройства защиты состоит из сетевого трансформатора ТЗ (напряжение на вторичной обмотке - 12 В/0,1 А), выпрямительного моста VD3, сглаживающих конденсаторов СЗ, С6 и интегрального стабилизатора на микросхеме DA1. Индикация включения устройства выполнена на светодиоде HL1. Трансформаторы тока Т1 и Т2 выполнены на ферритовых кольцах диаметром 18 мм из феррита 2000НМ. Они содержат обмотки, состоящие из 96 витков провода ПЭЛ-2 Ø0,1 мм. Сетевые провода питания нагрузки пропущены через внутренние отверстия ферритовых колец. Типы используемых элементов и их возможные замены указаны в таблице.


Детали устройства защиты размещены на печатной плате из одностороннего фольгированного
стеклотекстолита.толщиной 1,5 мм и размерами 100x50 мм. Чертеж платы и расположение деталей показаны на рис.2.

Готовая плата устанавливается в пластмассовую монтажную коробку БП-1 с розеткой для подключения нагрузки. Индикаторные светодиоды выносятся на внешнюю панель корпуса, трансформаторы тока закреплены на плате "навесом".
Регулировка устройства заключается в установке чувствительности транзисторного триггера. При отсоединенных от схемы трансформаторах Т1 и Т2 резистор R3 устанавливают в положение, когда включается реле К1, и плавно возвращают движок резистора немного назад, чтобы триггер отключился. Контроль переключения можно отследить по светодиоду HL2: его свечение указывает на включенное состояние нагрузки, потухание - на отключенное (аварийное состояние). Концы обмоток трансформаторов Т1, Т2 соединяют последовательно так, чтобы при подключении нагрузки (например, настольной лампы) переменное напряжение на конденсаторе С2 было равно нулю. Создав искусственную утечку, т.е. подав переменное напряжение величиной 1 ...5 В (с вторичной обмотки любого сетевого трансформатора) через ограничивающий резистор сопротивлением 100 Ом на выпрямитель VD1, прослеживают выключение нагрузки. Трансформаторы Т1, Т2 при этом отключать не следует.
Устройство предназначено для защиты потребителей мощностью не более 200 Вт. Электроприборы большей мощности следует подключить через электомагнитный пускатель, катушку которого запитать от сети через нормально замкнутые контакты реле К1 (К1.1 или К1.2).
РМ 1/2013

Утечка тока в землю – довольно популярное и ходовое понятие. Большинство людей пользуются им в разговорном обиходе, но далеко не каждый понимает его физическую сущность и до конца не осознает масштаб пагубных последствий этого явления. Для людей, не сведущих в тонкостях электротехники, достаточно будет знать, что под данным понятием следует понимать протекание тока от фазы в землю по нежелательному и не предназначенному для этого пути, то есть по корпусу оборудования, металлической трубе или арматуре, сырой штукатурке дома или квартиры и другим токопроводящим конструкциям. Условиями возникновения утечек является нарушение целостности изоляции, которое может быть вызвано старением, термическим воздействием, как правило, вызванным перегрузкой электрооборудования или механическим повреждением. В этой статье мы расскажем читателям сайта , чем опасна утечка тока в квартире, какие причины ее возникновения и меры защиты в домашних условиях.

Чем она опасна?

Электрическая изоляция не может быть идеальной, поэтому при работе потребителя электроэнергии, даже в случае ее полной исправности, утечка тока всегда имеет место, величина которой имеет мизерное значение и не представляет опасности для человека. В случае частичного или полного нарушения изоляции, значения токовых утечек возрастают и могут быть серьезной угрозой здоровью и жизни людей. Проще говоря, в случае потери сопротивления изоляции при прикосновении к корпусу электротехнического устройства, кабельной оболочке, штепсельной вилке или розетке, трубе водопровода или отопительной системы, стене дома или квартиры, человеческое тело выступит в роли проводника, через который пройдет протекание токов утечки в землю. Последствия могут быть самыми печальными, вплоть до летального исхода.

Не стоит забывать о том, что наличие утечки в электрохозяйстве дома и квартиры может влиять на потребление электрической энергии. При наличии данного явления в проводке, даже в случае отключения всех потребителей, электрический счетчик будет фиксировать расход электричества.

Характерные признаки

Обладая понятием, что такое утечка электричества, причинами возникновения и сопутствующим опасными последствиями, хозяину дома или квартиры не мешает знать, как определить электрооборудование с пониженным сопротивлением изоляции. Для начала следует твердо усвоить, если при прикосновении к электрическому прибору, к трубопроводам или стенам в помещении, ощущается даже едва уловимое воздействие электричества, в электросети дома или квартиры имеет место утечка тока. Потеря сопротивления изоляции может произойти, как в неисправных потребителях электроэнергии, так и в проводке. Частый признак опасного явления — когда .

Как определить, поврежден ли электроприбор?

Классическим средством измерения сопротивления изоляции является мегомметр, но, так как такой прибор в домашнем обиходе вещь довольно редкая, для этой цели можно использовать простейшие и доступные средства измерения, такие как индикатор напряжения и мультиметр.

Другой вариант — проверить утечку тока индикатором напряжения. Такой способ проверки можно использовать в том случае, если проверяемый электроприбор имеет металлическую оболочку. В случае, когда есть сомнения в исправности и безопасности пользования прибором, наличие или отсутствие утечки можно проверить отверткой-индикатором, предназначенным для поиска фазы в сети. Для этого необходимо при включенном потребителе прикоснуться жалом отвертки-индикатора к металлическому корпусу электротехнического устройства, если произойдет даже слабое срабатывание индикации фазоискателя, проверяемый потребитель неисправен и представляет опасность. Более подробно о том, мы рассказали в отдельной статье.

Утечка тока на корпус в приборе с металлической оболочкой может быть вызвана не только потерей сопротивления изоляции. Причиной этого может служить обрыв перемычки заземляющей металлический корпус изделия, в том случае, если предусмотрена система заземления.

Важно! Во время проверки необходимо соблюдать осторожность и исключить прикосновение руками металлического корпуса изделия и жала отвертки.

Проверка мультиметром. мультиметром производится только на обесточенном оборудовании. Перед проверкой измерительный прибор необходимо переключить в режим измерения сопротивления на отметке 20 МОм. Щуп мультиметра зафиксировать на корпусе проверяемого изделия, второй на одном из контактных штырей вилки. Такую же операцию необходимо проделать для второго контактного штыря и с заменой полярности щупов. На исправном электрооборудовании на шкале измерительного прибора должна высвечиваться бесконечность. В противном случае электрооборудованием пользоваться нельзя, его необходимо либо сдать в ремонт, либо утилизировать. мы также рассмотрели на сайте.

Проверка мегомметром. Порядок проверки такой же, как в случае с мультиметром. Пользуясь мегомметром, необходимо помнить, что при вращении его рукоятки на выходе этого прибора генерируется напряжение от 500 до 1000 Вольт, которые могут безвозвратно вывести из строя слаботочные электронные элементы оборудования.

О том, мы рассказывали в отдельной статье на сайте!

Поиск проблемы в электропроводке

Утечка в скрытой проводке дома или квартиры может вызвать поражение электрическим током во время штукатурки стен или клейки обоев. Как ее обнаружить без привлечения специалистов и использования специальных приборов. Существует проверенный способ проверки утечки в скрытой проводке дома или квартиры с использованием транзисторного радиоприемника, имеющего средневолновый и длинноволновый диапазоны приема. Перед проверкой необходимо выключить все потребители электроэнергии. Далее необходимо пройтись с приемником, предварительно настроенным на частоту, на которой нет вещания радиостанций, в непосредственной близости от стен в местах прокладки проводки. При приближении к проблемному месту динамик приемника начнет характерно фонить.