Вопросы внедрения индукционных ламп в системах освещения. Индукционные лампы. Варианты исполнения и маркировка

(5 votes, average: 5,00 out of 5)

На рынке энергосбережения компания НаноСвет существует уже более семи лет и активно производит, поставляет и внедряет индукционные светильники. Однако первые свои решения внедрения экономичных источников света начиналась с поставок светодиодных светильников, собранных из корпусов светильников типа РКУ и установленных в них светодиодных блоков. Как показал практический опыт, в вышеуказанные типы корпусов возможна инсталляция светодиодов или кластеров лишь небольших мощностей, так как не обеспечивался требуемый теплоотвод. Попытки создать качественную модель светильника по данному принципу и аналогичную по световым характеристикам светильнику с лампой ДРЛ-250 были неудачными, так как светодиоды перегревались и быстро деградировали. Данный путь создания недорогих светодиодных светильников был пройден многими компаниями, схожие решения светодиодных светильников небольшой мощности можно встретить на рынке и сейчас.

Аналогичная ситуация была с первыми вариантами промышленных светодиодных светильников. Стояла задача по освещению промышленных предприятий, складов, ангаров и т.д. В основу корпуса выбирались традиционные варианты светильников типа РСП, ЖСП и т.д., в которые монтировались светодиодные модули. Но важно отметить, что если первые светодиодные уличные светильники в корпусах типа РКУ эксплуатировались в более щадящем температурном режиме, то промышленные, зачастую установленные под крышей цеха, подвергались серьезным температурным нагрузкам. Срок службы таких изделий был коротким. В кратчайшее время светильники синели или зеленели. Либо блоки питания быстро выходили из строя. Со временем многие производители промышленных светильников стали учитывать все конструктивные особенности и температурные режимы светодиодных источников света.

Краткая история создания индукционных и светодиодных источников света

23 июня 1891 года, Николай Тесла получил патент США № 454622 на создание прототипа современной индукционной лампы и вошел в историю электротехники как изобретатель более эффективного и экономичного источника света, чем лапа накаливания.

Прототип первой индукционной лампы, запущенной в массовое производство был представлен компанией PHILIPS в 1976 году. Можно считать, что примерно в те же годы появились полноценные индукционные светильники. Принцип действия ламп серии MasterQL до сегодняшнего дня особо не поменялся. Некоторые производители индукционных ламп до сих пор копируют их, но, естественно, под своим брендом.

Как ни странно, но история светодиодных источников света начинается практически с тех же времен. Первое известное сообщение об излучении света твердотельным диодом было сделано в 1907 г. британским экспериментатором Генри Раундом из лаборатории Маркони.

В 1923 г. наш соотечественник Олег Владимирович Лосев, проводя радиотехнические исследования, заметил голубоватое свечение, испускаемое некоторыми полупроводниковыми детекторами. Однако интенсивность излучения была столь ничтожной, что научная общественность фактически «не увидела» его, по крайне мере, в переносном смысле, так как в электронике тех дней происходили более значимые вещи.

Первые светодиоды промышленного назначения были созданы Ником Холоньяком в лабораториях Университета штата Иллинойс (США) и именно Ник Холоньяк считается «отцом» современных светодиодов.

В шестидесятые годы двадцатого столетия были созданы первые образцы светодиодных ламп. Они были очень дороги и использовались только как индикаторы-сигнализаторы. Световая отдача их была 1-2 лм/Вт. Их практическое применение было очень ограничено.

В 1968 году создана первая светодиодная лампа, предназначенная для индикатора Monsanto, в этом же году в США компания Hewlett-Packard выпустила в свет самый первый в мире светодиодный экран, предназначенный для рекламы. Это был слабосветящийся дисплей, информация на котором отображалась только красным цветом.

Начиная с 1985 г. удалось увеличить поток света до 10 лм. и появилась возможность их применения в качестве самостоятельных световых элементов (к примеру – лампочки в автомобилях).

В начале 90-х гг. малоизвестная японская фирма «Hure» выбросила на рынок светодиоды в десятки раз более яркие, чем все их предшественники, светоотдача перешагнула рубеж в 30 лм/Вт. С этого времени светодиоды становятся адекватной альтернативой лампам накаливания.

В этом же году крупнейшие западные компании инвестировали свыше 70 миллионов долларов в исследовательскую деятельность, связанную с возможностью применения и производства светодиодов.

К концу 2006 г. светодиоды заняли прочные позиции на современном рынке, и сфера их применения значительно расширилась.

Промышленные энергосберегающие светильники, как категория наиболее энергоемких источников света

В данной статье мы постараемся рассмотреть вопросы, связанные с внедрением промышленных энергосберегающих светильников, так как по нашему мнению именно этот вид источников света является одним из самых наиболее энергоемких. Первые опыты по созданию недорогих светодиодных светильников начинались с создания светодиодных светильников собранных из корпусов светильников типа РКУ ЖКУ и установленных в них светодиодных блоков. Как показал практический опыт, в вышеуказанные типы корпусов возможна инсталляция небольших мощностей светодиодов или кластеров на их основе, так как в вышеприведенный вариант выбора корпуса не обеспечивается требуемый теплоотвод для светодиодных плат. Данный путь создания недорогих светодиодных светильников был пройден многим компаниями, схожие решения светодиодных светильников небольшой мощности можно встретить и сейчас. Попытки создать модель аналогичную по световым характеристикам светильнику с лампой ДРЛ 250 на основе штампованных корпусов из стали в основном были обречены на неудачу. В таких решениях светодиоды через незначительный промежуток времени перегреваются и начинают менять цвет, а это значит что период эксплуатации таких «поделок» существенно ниже заявляемых 50000 часов.

Наработав большую клиентскую базу, а так же проанализировав огромное количество обращений в нашу компанию по вопросам энергосбережения, стало ясно, что наиболее остро в экономии нуждаются промышленные предприятия. Это и понятно, как правило, высота установки промышленных светильников превышает 5-6 метров, а иногда достигает и 12-15 метров. Режим работы систем освещения на многих предприятиях составляет 12 или 24 часа. В этих условиях вопрос энергосбережения стоит особенно остро. Каким источником света заменить лампы ДРЛ, ДНаТ или МГЛ?

Ниже приведена сравнительная таблица некоторых видов ламп

Тип лампы Средний срок службы (часов горения) КПД устройства Эффективность (Лм/Вт) Уменьшение светового потока к концу срока службы лампы Температура эксплуатации Гарантийный срок Обслуживание в процессе эксплуатации 5 лет
Индукционная 100000 0.98 80-110 10-15% -42…+50 5-10 лет Технологическая чистка
Накаливания 1000 0.1 41794 40-60% -50…+70 Нет Замена ламп
Ртутная высокого давления 4000 0.85 20-24 40-60% -40…+40 Нет Замена ламп и ПРА
Люминесцентная 8000 0.85 26-29 40-50% +10…+40 Нет Замена ламп и ПРА
КЛЛ 8000 0,5-0,85 18-22 15-30% -20…+40 3 мес Замена ламп
Натриевая высокого давления 2000 0.85 42-50 40-60% -20…+40 Нет Замена ламп и ПРА
Металлогалогенная 8000 0,65-0,8 24-36 15-20% -20…+40 Особые условия Замена ламп и ПРА
Светодиодная 50000 0.93 95-123 20-30% -45…+60 3-5 года Технологическая чистка

Очевидно, что за последние пару лет рынок промышленного энергосберегающего освещения существенно вырос, причем он развивается как интенсивным, так и экстенсивным способом. С ростом количества предложений, появились модели светильников созданные явно дилетантами, далекими от понимания физических процессов в полупроводниковых источниках света. Но надо отдать должное, что некоторые производители добились явного успеха в разработке конструктивов и источников питания LEDсветильников, а так же созданием моделей с заданными параметрами световых потоков. Если проанализировать рынок светодиодных светильников, представленный разными производителями, то ассортиментный перечень наиболее широко представлен мощностями от 6-15 Вт до 40-60 Вт (световой поток светильников до 5-6 тысяч люменов). Это источники света для ЖКХ, множественные модификации светильников в потолки типа «армстронг», уличное освещение с небольших высот и т.д. После этого «мощностного» рубежа, количество моделей существенно снижается.

Это обусловлено тем, что для производства светодиодных светильников мощностью от 120-150 Вт и выше требуются специальные расчеты, обеспечивающие создание необходимой геометрии корпуса светильника для оптимального функционирования светодиодов. Можно с уверенностью сделать вывод, что конструкция мощного светодиодного светильника, выполненного с учетом всех требований по теплоотводу, оптимальными характеристикам драйвера является сложным техническим изделием. Именно к этой категории и относятся источники света для освещения цехов, складов терминалов и т.д

Промышленные энергосберегающие светильники на основе индукционных ламп существенно отличаются строением и требованиям к теплоотводу. Так, температура нагрева лампы не превышает 80-85 градусов по Цельсию и данный параметр лишь косвенно влияет на физические процессы получения света. Еще важно отметить один принципиальный момент, отличающий промышленные светодиодные светильники от индукционных. В случае выхода из строя первого, для его ремонта необходимо провести демонтаж оборудования и передать в торгующую организацию или на завод производитель. Как правило, в данном случае ремонт не сможет быть произведен по месту установки. Этой проблемы нет с индукционными источниками света. Достаточно просто приобрести или саму лампу или ПРА (балласт) к ней. Замену вышедшего из строя источника света может осуществить любой электрик предприятия без специальной подготовки. К тому же, гарантия на большинство светодиодных светильников не превышает три года против пяти лет на индукционные лампы или светильник на их основе.

Важным фактором в пользу создания энергосберегающих систем освещения на основе индукционных ламп является возможность использовать уже установленные корпуса светильников подвесного типа. При помощи специальных переходников под цоколь Е40 или Е27 возможна установка ламп в традиционные корпуса РСП (ЖСП). Данная функция позволяет существенно снизить затраты заказчика при переводе существующей системы освещения на энергосберегающую индукционную. Так в мае 2012 года, нашей компанией был реализован комплекс работ по переоснащению системы освещения ремонтных зон и выставочных залов у одного официальных дилеров NISSANв России – NATCGROUP. В установленные корпуса из алюминия и поликарбоната было установлено более 100 индукционных ламп мощностью 200 Вт. Замена ламп ДНаТ и МГЛ позволила сделать цвета выставленных в зале автомобилей машин более насыщенными и яркими, а так же обеспечить более комфортный свет для сотрудников ремонтных цехов.

В настоящее время ведется работа по переоснащению ряда промышленных цехов на предприятиях Московской, Курской и Белгородской областях.

Сравнительная стоимость индукционных промышленных светильников и светодиодных

Если проанализировать зависимость цены светодиодного светильника от его мощности или светового потока, то видно, что после рубежа в 50-60 Вт цена светильника возрастает в геометрической прогрессии при увеличении потребляемой мощности на каждые 20-30 Вт. Так, согласно статистики, цена заявляемого промышленного светодиодного светильника со световым потоком 8000-11000 лм, являющегося аналогом светильника РСП с лампой ДРЛ-250 находится в ценовом коридоре от 13 до 27 тысяч рублей. Возможно, некоторые компании могут предложить и более низкую цену, но качество таких изделий вызывает явные сомнения, поэтому в расчет мы будем брать продукцию, производители которой дают гарантию не менее 3 лет.

В открытых источниках информации взята информация по стоимости светодиодных промышленных светильников серии УСС одного из крупных российских производителей. Данные актуальны на начало июня 2012 года.

Проведем сравнение:

№п/п Модель светильника/аналог Потребляемая мощность Световой поток,лм Цена, руб с НДС Гарантия, лет
1 УСС 36/100 38 вт 3600 11700-00 3
2 HB-01 40W 40 вт 3200 6880-00 5
3 УСС 70/100 75 вт 7200 18500-00 3
4 HB-01 100W 100 вт 8000 8223-00 5
5 УСС150/100 150 вт 14400 35000-00 3
6 HB-01 150W 150 вт 12000 9940-00 5

Как видно из сравнения стоимостных характеристик, стоимость единицы светового потока (отношение Люмен/рубль) более привлекательное у индукционных светильников, чем у светодиодных. Причем, чем выше мощность осветительного оборудования, тем разница в ценах будет более существенной.

Сравнение параметров светодиодных и индукционных источников света

1. Срок службы индукционных ламп составляет от 60000-150000 часов, против 30000-50000 часов у светодиодных светильников;

2. Светоотдача индукционных ламп несколько ниже, чем у светодиодных – 80-110 лм/Вт, для сравнения у светодиодных светильников 90-120;

3. Приблизительно равный КПД 0.9 (0.9-0.95 у светодиодов);

4. Уменьшение светового потока к концу срока службы на 10-15% через 30000 часов. У светодиодов, за этот период деградация составит не менее 30%);

5. Большой гарантийный срок – 5 лет, у большей части светодиодных светильников – 2-3 года;

6. Высокая фотооптическая эффективность 120-200Флм/Вт. У светодиодов 40-90 Фл/Вт;

7. Цена ниже в 3-5 раз по сравнению со светодиодным светильником той же мощности;

8. Высокий индекс цветопередачи Rа>80-83, т.е. комфортный, мягкий свет, приятный для глаз. В настоящее время большинство светодиодов выпускается с индексом цветопередачи 70-75 Ra. В отличие от светодиодного света, у индукционного отсутствует блесткость;

9. Низкая температура нагрева лампы, всего 60-80 градусов по Цельсию и широкий диапазон рабочих температур от -40 до +60;

10. Высокий коэффициент мощности до 0.95;

Индукционное освещение: выводы

Стараясь объективно рассмотреть два источника света для решения задач освещения промышленных предприятий, по многим параметрам индукционные лампы опережают светодиодные. Важнейшим фактором в пользу индукционного света является период окупаемости энергосберегающих проектов на их основе. По нашим просчетам для действующего предприятия он не превышает 2-2,5 года, а для строящегося вновь – не более года. Период окупаемости проектов на индукционных светильниках существенно ниже гарантийного срока службы индукционных ламп и светильников на их основе. Это значит, что еще 2-3 года, до окончания гарантии на индукционные лампы после возврата инвестированных средств в энергосберегающую систему освещения, предприятие будет получать прибыль за счет сэкономленных финансовых ресурсов на освещение.

Безусловно, у светодиодных светильников есть своя ниша рынка, но как показывает практика и расчеты, из-за высокой стоимости оборудования, проекты энергосберегающего освещения на их основе пока не получили широкого внедрения. По нашему мнению, у индукционных ламп и светильников на их основе более реальные перспективы в ближайшие годы.

В последнее время все чаще уделяется вопрос управляемым системам освещения. На основе светодиодом уже получены успешные решения уличного и промышленного освещения. Технические специалисты нашей компании ведут работы по созданию энергосберегающих систем освещения на основе индукционных ламп. В третьем квартале 2012 года мы планируем получить первые серийные образцы данных решений. Об успехах в данном направлении мы сообщим в следующих номерах журнала.

Индукционная лампа это новое поколение люминесцентных ламп и чтобы понять разницу между ними сначала рассмотрим принцип действия люминесцентной лампы:

  1. Светиться внутреннее покрытие трубки лампы — люминофор. Его в свою очередь побуждает к свечению ультрафиолетовое излучение паров ртути.
  2. Пары ртути излучают ультрафиолет под действием электрического напряжения (поля)
  3. Электрическое поле проходит через полость лампы по инертному газу, как правило используется аргон
  4. В торцах трубки находятся электроды, покрытые окислами щелочноземельных металлов. При включении между противоположными электродами возникает дуговой разряд, проходящий по инертным газам.

Покрытие окислами щелочных металлов электродов необходимо для увеличения срока службы вольфрамовой нити (вольфрамовая нить используется также в лампах накаливания), без него вольфрамовая спираль довольно быстро перегорает от перегрева. Однако со временем данное покрытие разрушается (выгорает, трескается, осыпается). Пик негативного влияния на покрытие вольфрамовой нити случается во время включения лампы, т.к. разряд возникает на небольшом участке нити, вызывая перегрев на данном участке. Постепенно электроды выгорают, перегрев становиться больше, что ведет к перегоранию нити, в следствии чего лампа перестает работать.

Ос но вное конструктивное отличие индукционной лампы состоит в том, что в ее составе нет электродов контактирующих с газовой плазмой. Электроны инертного газа приходят в движение под влиянием электромагнитного поля возникающего в индуктивной катушке с медной обмоткой. Медь в свою очередь мало подвержена разрушению в подобных условиях эксплуатации и продолжительность срока службы лампы будет зависеть от качества других материалов использованных при ее производстве, т.е. благодаря замене электродов на индукционную катушку удалось избавиться от самого ненадежного элемента в лампе. Данная конструкция позволила добиться более высокой производительности светильника и избавиться от колебаний светового потока, взамен получив большие габариты и удорожание себестоимости.

Принцип работы индукционной лампы.

  1. После включения высокочастотный ток с ПРА подается на индуктивные катушки, внутри которых возникает электромагнитное поле.
  2. Под действием поля свободные электроны разгоняются, разогревая лампу и амальгаму из которой испаряются атомы ртути.
  3. Остывая и возвращаясь в свое исходное состояние атомы ртути выделяют энергию — квант ультрафиолетового света. Повторно соударяясь со свободными электронами снова выделяют энергию возвращаясь в исходное состояние и т.д.
  4. Ультрафиолетовый свет проходя через люминофор преобразуется в видимое свечение.

Описанные выше процессы происходят очень быстро, благодаря чему лампа мгновенно загорается на 70% мощности и не требует времени на остывание при повторном включении.


Преимущества индукционных светильников.

— Эксплуатационный срок службы – до 100 тыс. часов.
— Гарантийный срок эксплуатации — 5 лет.
— Малое энергопотребление в сравнении со светильниками на основе ламп ДРЛ и ДНаТ.

— Светоотдача до 85 Лм/Вт.
— Минимальная пульсация (<1%).
— Индекс цветопередачи Ra от 80.
— Температурный режим работы от -50°C до +70 °C
— Виброустойчивость.
— Значительный интервал рабочего напряжения 110 — 280 В.
— Мгновенный пуск и перезапуск.

Свечение индукционного светильника и наглядное воздействие на предмет помещенный в индуктивную катушку:

Не только светодиодные лампы могут похвастаться сегодня высокими техническими характеристиками. Еще один вариант экономичного источника света - индукционная лампа . Индукционные лампы относятся к люминесцентным лампам, но отличаются более совершенной конструкцией в силу отсутствия внутри колбы электродов.

Для создания необходимой электрической напряженности (переменного электрического поля с частотой от 190кГц до 250кГц), заставляющей газ внутри колбы излучать электромагнитные волны, служит явление электромагнитной индукции. Поэтому лампа и называется индукционной лампой.

Такие лампы выпускаются на низкое постоянное (12 В или 24 В) и на сетевое переменное (120 В, 220 В, 277 В, 347 В) напряжение, при номинальной мощности от 12 до 500 Вт, и при цветовой температуре из диапазона от 2700 К до 6500 К, характерного для обычных люминесцентных ламп.

В процессе работы индукционной лампы проявляются одновременно несколько явлений: , свечение люминофора - результат получается аналогичным , однако срок службы индукционных ламп приблизительно в 10 раз превосходит компактные люминесцентные лампы и газоразрядные лампы популярных типов, достигая 100000 часов.

Кроме того светоотдача индукционных ламп выше 70 Лм/Вт, и падает максимум на 30% даже через 60000 часов работы, то есть данный источник света превосходит по энергоэффективности и качеству света электродные люминесцентные лампы. Индекс цветопередачи индукционных ламп больше 80, и человеческий глаз отлично воспринимает такой свет как комфортный и ровный. Нагрев колбы в процессе работы лампы минимален.


Сегодня на рынке представлены индукционные лампы со вешней и внутренней индукцией, в зависимости от расположения индуктора. У ламп со внешней индукцией индуктор располагается вокруг трубки колбы, а у ламп с индукцией внутренней - внутри колбы. Кроме того электронный балласт может быть расположен отдельно от колбы или быть встроенным в корпус. Электронный балласт индукционной лампы представляет собой высокочастотный преобразователь, у которого роль вторичной обмоткой ВЧ-трансформатора играет газ внутри колбы лампы.


Пример индукционной лампы с внутренней индукцией - лампа Венера Е40 на 80 ватт . Лампа имеет стандартный цоколь Е40, благодаря чему ее сразу можно установить в уже имеющийся осветительный прибор, без необходимости приобретать какой-то особенный - достаточно просто заменить лампу. Колба имеет обычную форму, как у лампы накаливания. Цветовая температура может варьироваться от 3000 до 5000 К - оптимально для восприятия человеком. Гарантированный срок службы лампы, заявленный производителем, - 14 лет при ежедневной работе по 12 часов.

Конструкция лампы традиционная для индукционных - безэлектродная . Электроника лампы расположена в цоколе, который соединен с индукционной катушкой. Разъемное соединение колбы и основания-балласта позволяет удобно транспортировать такие лампы и легко их устанавливать.

Электронный балласт изготовлен из высококачественных компонентов, которые не выйдут из строя даже при многократном включении-выключении. Объем колбы достаточно велик, чтобы лампа значительно не нагревалась в процессе работы, то есть проблемы перегрева элементов электронного балласта не возникнет.

Заменив лампу накаливания на индукционную мощностью 80 ватт, например в прожекторе ангара, в цеху, в офисе, или в любом помещении муниципального учреждения, потребитель получит световой поток в 6000 люмен при световой отдаче до 75 Лм/Вт, и сократит расходы на электроэнергию потребляемую освещением в 4-10 раз. Человек сможет надолго забыть о необходимости обслуживания и замены лампы.

Такая лампа прослужит до 8 раз дольше компактной люминесцентной лампы и до 60 раз дольше лампы накаливания. Данные индукционные лампы без проблем работают как в летнее, так и в зимнее время, даже в неотапливаемых помещениях, таких как гаражи или склады стройматериалов.


Пример индукционной лампы с наружной индукцией - индукционная лампа Сатурн 40 Вт . Такая лампа отлично подойдет для настенного или потолочного, домашнего или офисного светильника, ее световой поток составляет 3200 люмен. Более мощные модели подобных индукционных ламп устанавливают в прожекторы уличного освещения. 80 Лм/Вт - весьма достойная светоотдача, говорящая о высокой экономичности лампы. Цветовая температура - 3000/5000 К. Гарантированный срок службы лампы - 100000 часов.

Электронный балласт сделан выносным, его устройство позволяет использовать лампу, включать и выключать ее на протяжении 23 лет при непрерывных рабочих циклах по 12 часов в сутки. Расходы на обслуживание снижаются при этом примерно в 5 раз по сравнению с другими типами ламп, а о регулярной замене ламп можно забыть очень надолго.

Что касается установки лампы, то она может быть установлена сразу над рабочим местом без расчета на обеспечение удобных условий для замены и обслуживания. Это же относится к лампам более мощным для дорожных прожекторов - их можно устанавливать непосредственно над дорожным полотном, без расчета на то, что нужно будет часто подниматься к прожектору чтобы своевременно заменить отработавшую лампу, как это обычно происходит с натриевыми лампами.

Таким образом, конструктивные особенности лампы типа «Сатурн» исключают проблему чрезмерного нагрева, делая срок службы рекордным, а эксплуатацию в целом весьма экономичной. Цветовая температура максимально близка к естественному освещению, индекс цветопередачи выше 80. При всем при этом окупится лампа за 1,5 года, а прослужит не один десяток лет. Производитель и сам дает пятилетнюю гарантию.


Лампы с внешней индукцией являются универсальными. Их без проблем можно устанавливать как внутри помещений, так и снаружи на открытом воздухе, где они с легкостью выдерживают зимние морозы до -40°C. В промышленных и бытовых помещениях индукционные лампы отчетливо конкурируют со светодиодными (смотрите - ). В освещении мостов, дорог, туннелей, спортивных сооружений, стадионов, складов - всюду индукционные лампы займут достойное место, даже там, где требуется высокое качество цветопередачи.

Вообще преимущества индукционных ламп трудно переоценить. На самом деле они превосходят светодиодные лампы по реальному сроку службы, ведь светодиоды быстрее теряют световой поток, и обычно через 7 лет нуждаются в замене, в то время как индукционная лампа непрерывно прослужит более 15 лет, уверенно сохранив в среднем 85% изначального светового потока, причем циклов включения-выключения допускается неограниченное количество.

Светоотдача индукционных ламп достигает 160 Лм/Вт, и чем мощнее лампа - тем выше светоотдача, а следовательно и энергоэффективность (экономичность). КПД индукционных ламп составляет в среднем порядка 90%.

Сегодня потребители все чаще выбирают энергоэффективные бытовые и промышленные осветительные устройства. Однако помимо экономии важную роль играет и качество подсветки. Достойной альтернативой традиционным источникам освещения являются индукционные лампы.

Они излучают приятный для глаз мягкий свет, не меняющий объективное восприятие предметов. Давайте вместе разберемся в устройстве и принципах работы индукционных ламп.

Первичным источником света в индукционной лампочке служит плазма, искусственно созданная в результате ионизации газовой смеси ВЧ электромагнитным полем.

Ток порождает переменное электрическое поле, обуславливая возникновение газового разряда в стеклянной колбе. Возбужденная ртуть генерирует УФ-излучение, которое благодаря люминофору конвертируется в видимый свет.

Конструкция индукционной лампы включает три базовые функциональные элементы:

  • газоразрядную трубку;
  • индукционную катушку с ферритовым кольцом;
  • электронный балласт.

Внутри трубки находятся капли амальгамы ртути. Сама колба заполнена газом с низкой химической реактивностью – аргоном/криптоном, а ее внутренняя поверхность покрыта неорганическим люминофором.

Индукционная катушка и электромагнит формируют высокочастотное магнитное поле, под воздействием которого свободные электроны ускоряются, сталкиваются и возбуждают атомы ртути.

В результате образуется ультрафиолетовое излучение. Люминофором оно трансформируется в видимое яркое свечение.

Как и в простых флуоресцентных лампочках, сочетание разных люминофоров в покрытии колбы ИЛ дает свечение различных цветов. Чаще всего встречаются устройства с колориметрической температурой 3500 К, 4100 К, 5000 К, 6500 К

Электронный балласт подключается к источнику постоянного напряжения 12 В/24 В или же к сети синусоидального напряжения 120 В/220 В/380 В.

Система управления пускателем трансформирует переменный ток 50 Гц в постоянный, а потом – в ток высокой частоты от 190 кГц до 2,65 МГц.

Этот ВЧ ток и создает магнитное поле. Кроме того, пускатель генерирует стартовый сильный импульс, который зажигает индукционный источник света.

Чтобы обеспечить стабильную работу безэлектродного осветительного устройства, система управления также может изменять силу электрического тока и его частоту через катушку индуктора.

С целью уменьшить рассеяние высокочастотного электромагнитного поля лампы оснащают ферритовыми экранами и/или специальными сердечниками.

Основное отличие индукционных энергосберегающих ламп от других источников света – отсутствие нитей накала и контактных термокатодов. В индукционных светильниках электромагниты расположены снаружи, то есть прямого контакта электродов с ионизированной газовой средой нет

Это делает баллон осветительного устройства более однородным и примерно одинаково нагруженным по температуре.

При продолжительной работе такого освещения растрескивание стеклянной колбы не наблюдается, со временем материал электрода не осаждается на стенках.

Отсутствие электродов накаливания, необходимых для зажигания обычных лампочек, позволяет достичь невероятно длительного срока эксплуатации индукционных светильников – до 120000 часов работы.

Кроме того, ресурс работы индукционных источников света примерно в 2-3 раза превышает срок эксплуатации светодиодов.

Разновидности индукционных ламп

Впервые лампу без контактных электродов продемонстрировал Никола Тесла в далеком 1893 году на Всемирной выставке в Чикаго. Презентованный публике осветительный прибор питался от магнитного поля катушки Тесла. А первый надежный прототип индукционного источника света создал Джон Мелвин Андерсон в 1967 году.

Классификация безэлектродных лампочек

В 1994 году компанией General Electric была представлена компактная энергосберегающая лампа GENURA со встроенным высокочастотным генератором в цоколе.

Серийный выпуск индукционных люминесцентных ламп стартовал в 1990-х годах.

Сегодня лидером в производстве безэлектродных энергоэффективных осветительных устройств являются корпорации PHILIPS Lighting, GE Lighting и OSRAM Licht AGO. В таблице указаны параметры и стоимость разных моделей ламп этих производителей

В зависимости от типа конструкции, индукционные источники света бывают:

  • со встроенным балластом – электрический генератор и лампа совмещены в одном блоке;
  • с отдельным электронным пускателем – наружный генератор и лампа являются разнесенными приборами.

В зависимости от способа размещения катушки эти лампы также делят на устройства с внешним (низкочастотные) и внутренним (высокочастотные) индуктором.

В первом случае катушка с ферромагнитным стержнем обвита вокруг баллона. Рабочая частота лампочек с внешней индукцией лежит в диапазоне 190-250 кГц.

Они имеют лучшие условия для интенсивного теплообмена с окружающей средой, поскольку катушка снаружи герметичной колбы легко рассеивает выделяемое устройством тепло. Срок службы низкочастотных приборов – до 120000 часов.

Во втором случае индукционная катушка с намотанным сердечником расположена внутри стеклянной колбы. Выделяемое тепло оказывается в полости осветительного устройства, поэтому и нагреваются лампы с внутренней индукцией сильнее.

Их рабочая частота находится в интервале 2-3 МГц. Ресурс таких источников света не превышает 75000 часов.

По внешнему виду приборы с внутренним индуктором напоминают вакуумные лампочки. А вот модели с внешним индуктором имеют форму кольца или прямоугольника

Как высокочастотные, так и низкочастотные лампы имеют большой запас прочности и отличаются длительным сроком службы.

Варианты исполнения и маркировка

В настоящее время компаниями, которые специализируются на освещении, налажено серийное производство индукционных лампочек разных форм. Конструктивные особенности и варианты исполнения прослеживаются в их маркировке.

Первые два азбучных знака в шифре определяют вид устройства (ИЛ – индукционная лампа), третий указывает на форму. После буквенного обозначения обычно объявляют мощность.

ИЛК – индукционные лампочки круглой формы. Обладают высокими показателями световой отдачи и большим диапазоном спектрофотометрических температур. Подходят для установки в круглых и овальных светильниках.

Такие источники света активно используются для освещения складов, просторных производственных и ремонтных цехов, торговых комплексов, спортивных баз.

ИЛШ – лампы в форме шара. Выполнены в традиционной форме обычных вакуумных осветительных устройств большой мощности. Создают мягкий свет и зажигаются практически мгновенно.

Подходят для замены на энергоэффективные источники света без необходимости смены самого светильника.

ИЛШ устанавливают в прожекторах для освещения гостиниц и ресторанов, супермаркетов, а также в уличных и промышленных светильниках

ИЛУ – лампочки U-образной формы. Представляют собой приборы с отдельным генератором. Излучают яркий белый свет, при работе не мерцают.

Их задействуют для освещения стадионов, туннелей, метро и автомагистралей, рекламных стендов, вывесок и других объектов.

ИЛБ, ИЛБК – лампы с кольцеобразной формой колбы. В них генератор, катушка и трубка совмещены в едином блоке. Генерируют мягкий свет, который не ослепляет, быстро и легко зажигаются при температурах до -35 °C.

Подобные конструкции используют для подсветки отелей и торговых площадок, парковых зон и скверов, частных приусадебных территорий.

Отдельно стоит сказать об индукционных фитолампах для растений. Они отличаются формой стеклянной колбы и цветом излучения.

Разные модели индукционных фитоламп подходят для освещения зеленых насаждений в определенный период роста и развития. Серии таких изделий обозначают ТИЛ. Следующие две буквы указывают на конкретную модель лампы

Фитолампы индукционные ГП и ВГ предназначены для подсветки растений на стадии вегетативного роста. В них преобладает синий спектр излучения.

Устройства ФЛ используют на начальной фазе образования плодов, а также для ускорения формирования цветов. Они излучают красный свет.

Лампочки модели КЛ являются универсальными. Такие источники света дают возможность управлять ростом насаждений. Они генерируют насыщенный красный свет, необходимый для полноценного развития плодов растений и обильного цветения.

Примеры маркировки:

  • ИЛК-40 – круглая индукционная лампочка мощностью 40 Вт;
  • ТИЛПВГ-120 – прямоугольная фитолампа индукционная с мощностью в 120 Вт, модель ВГ для начального этапа вегетативного роста растений.

Излучение индукционной лампочки на 97% соответствует солнечному спектру, а потому отлично подходит для искусственного освещения тепличных комплексов.

Преимущества использования ИЛ

Безэлектродные лампы генерируют мягкий свет, комфортный для восприятия глазами. Оттенки цветов при этом не искажаются.

Яркость таких ламп можно изменять в пределах 30-100% с помощью простого для устройств с нитью накаливания.

Даже после 75000 часов работы индукционные приборы сохраняют уровень световой мощности на отметке 80-85% от первоначальной.

Обычные ЛЛ дневного света ближе к концу срока эксплуатации теряют до 55% яркости. На их колбах со временем образуются темные непрозрачные круги.

Преимущества использования индукционных безэлектродных ламп:

  • КПД 90%;
  • ресурс работы до 150 000 часов;
  • светоотдача больше 90-160 лм/Вт;
  • оптимальные условия для зрительного восприятия предметов;
  • диапазон рабочих температур в интервале от -35 °C до +50 °C;
  • коэффициент цветопередачи Ra˃80;
  • высокие показатели энергоэффективности;
  • минимальное нагревание колбы;
  • неограниченное количество циклов запуска/выключения;
  • отсутствие пульсации;
  • возможность регулировать интенсивность свечения;
  • гарантийный срок эксплуатации составляет 5 лет.

Производители заявляют, что индукционные источники света имеют лучшие технические характеристики, чем светодиоды и стоят в несколько раз дешевле. Энергопотребление у этих видов лампочек примерно одинаковое.

Применение безэлектродных ламп

Модернизованные осветительные приборы, не содержащие термокатодов и нити накала, используют как для внутреннего, так и для наружного освещения.

Сфера использования ИЛ

Безэлектродные лампы имеют встроенную защиту от КЗ (короткого замыкания) и скачков напряжения.

Индукционные светильники отличаются устойчивостью к вибрационным нагрузкам и случайным ударам, стабильно работают даже при пониженной температуре воздуха

Благодаря высоким показателям светоотдачи при небольшом потреблении электричества их используют в разных сферах:

  • для организации качественной подсветки улиц;
  • в торгово-развлекательных и гостиничных комплексах;
  • в офисных центрах и бытовых помещениях;
  • для освещения просторных цехов и складов на промышленных объектах;
  • для подсветки тепличных хозяйств и оранжерей;
  • для освещения автомагистралей и туннелей;
  • для организации взрывозащищенной подсветки на АЗС.

Благодаря стабильности параметров ртутные безэлектродные лампы используют в качестве прецизионно точечных источников УФ-излучения в спектрометрии.

Кроме этого, принцип индукционного возбуждения газа применяется в процессе перекачки энергии от внешних источников в рабочую среду лазеров.

Однако из-за наличия высокочастотного электромагнитного излучения индукционные светильники не устанавливают на железнодорожных станциях и в аэропортах.

Также эти лампочки способны вызывать помехи при одновременной работе со сверхчувствительным лабораторным и медицинским оборудованием. Поэтому в помещениях с подобной спецтехникой их не рекомендовано использовать.

Уличное и дорожное освещение

Наиболее эффективное дорожное освещение могут обеспечить уличные светильники с индукционными энергоэффективными лампами. Этот тип подсветки гарантирует комфортную видимость как для водителей, так и для пешеходов.

Дорожные светильники имеют прочное консольное крепление и монтируются на столбы, а также стандартные опоры. Их задействуют для освещения парковых зон и скверов, улиц и площадей, шоссе и автостоянок, набережных, дворов.

Мгновенный запуск ИЛ минимизирует потери электроэнергии и позволяет максимально эффективно использовать систему освещения. Это дает возможность организовать подсветку с задействованием датчиков движения

Как пример – мгновенный запуск освещения на автотранспортных магистралях в местах, где происходит движение машин и пешеходов.

Помимо этого, чувствительный датчик движения может быть совмещен с программируемым сумеречным выключателем.

Устройство настраивают под конкретные значения освещенности. При недостаточном уровне света датчик даст команду на включение ламп.

Возможность диммирования позволяет успешно применять интеллектуальные системы для эффективного управления уличной подсветкой.

За счет управления яркостью индукционных ламп с помощью регулятора мощности и астрономического таймера можно добиться реальной экономии электрической энергии, а также значительно сократить затраты на техобслуживание.

Внедрение интеллектуальных систем дает возможность контролировать состояние освещения, измерять и анализировать данные об энергопотреблении светильников.

Безопасные промышленные источники света

Использование устройств на базе индукционной технологии – экономически выгодное решение для модернизации систем освещения промышленных предприятий.

Индукционные светильники отличаются высоким качеством сборки и не нуждаются в регулярном обслуживании. Они существенно снижают потребление электричества и помогают повысить рентабельность производства.

Промышленные осветительные приборы имеют класс защиты IP54, что позволяет эксплуатацию даже в условиях загрязнения и повышенной влажности. Их можно устанавливать в неотапливаемых и плохо вентилируемых помещениях.

Закаленное стекло в сочетании с силиконовой изоляцией надежно защищает корпус от попадания внутрь инородных примесей и воды.

Существуют также промышленные взрывозащищенные модели ИЛ. Они не только обеспечивают качественное освещение, но и предотвращают возникновение пожароопасных ситуаций. Такие приборы повышают уровень безопасности на производстве

На корпус индукционных взрывозащищенных светильников наносят антистатическое полимерное покрытие.

Благодаря этому составу осветительные устройства характеризуются ударопрочностью и устойчивостью к воздействию минусовых температур.

Специальное искробезопасное покрытие не разрушается даже в щелочной и кислотной среде и способно сохранять свои свойства в течение 30 лет.

Подсветка в теплицах и оранжереях

Спектр индукционной лампы на 75% соответствует фотосинтетически активной радиации, необходимой для активного роста и длительного цветения растений.

Именно поэтому лампочки безэлектродного типа задействуют в качестве дополнительных источников в оранжереях и теплицах, для освещения стандартных и компактных гроу-боксов, прямой, боковой и междурядной досветки растений.

Рабочая температура индукционных осветительных приборов не превышает 60 градусов по шкале Цельсия, что позволяет располагать их близко к зеленым насаждениям

Использование таких ламп в гроу-боксах дает возможность значительно сократить расходы на охлаждение резервуаров.

Применение ИЛ также позволяет предварительно проектировать и раздельно устанавливать освещение для каждой зоны теплицы.

Чтобы скорректировать и направить максимум света в нужный сектор используют оптические поверхности – экраны. Они фокусируют излучение на конкретном участке.

А с помощью специальных отражателей равномерно распределяют искусственный свет по всей высоте зеленых насаждений.

Правила выбора ИЛ

Выбирая индукционные устройства освещения, важно учитывать их конструктивные особенности, эксплуатационные характеристики, а также степень безопасности.

Лишь при соблюдении такого подхода ИЛ можно считать целесообразным приобретением.

Сегодня в специализированных магазинах несложно найти индукционные безэлектродные лампы мощностью от 15 Вт до 500 Вт. Но существуют и более мощные, предназначенные для различных производственных нужд.

Лампы с овальной колбой выпускаются для светильников со стандартными патронами E14, E27 и E40.

Также есть специальные прямоугольные и кольцевые виды индукционных осветительных устройств, которые могут работать как в сети переменного тока, так и постоянного.

Стоит отметить, что индукционные лампочки в форме шара по размерам будут крупнее, чем обычные приборы с нитью накаливания, поскольку генератор ВЧ тока спрятан в цоколе. Это важно учитывать при покупке

Все индукционные светильники и безэлектродные лампы проходят обязательную сертификацию.

Поэтому можно с уверенностью говорить об их безопасности. Амальгама находится в запаянной колбе и при соблюдении базовых правил эксплуатации ее утечки исключены.

Однако нужно понимать, как и стандартные люминесцентные лампы, индукционные требуют соответствующей утилизации из-за наличия ртутных соединений и электронных комплектующих.

Твердую амальгаму – сплав ртути с другими металлами - можно использовать повторно. Стекло из лампы также сдают на переработку, но отдельно от люминофора.

Светильники с индукционной технологией не относятся к экологически безопасным видам освещения и в этом критерии сильно уступают светодиодам.

Необходимо добавить, что лампочка индукционного типа выходит на свой стабильный световой поток не сразу. На старте она выдает около 80% от полного излучения.

Чтобы этот показатель дошел до максимума, безэлектродной лампе нужно 2-3 минуты. За это время достаточно разогревается амальгама и испаряется необходимое количество ртути.

Выводы и полезное видео по теме

Индукционные светильники – новое поколение газоразрядных ламп. Принцип функционирования такого типа освещения:

Что делает лампы индукционными, особенности светильников этого вида и сфера применения:

Преимущества использования современных индукционных источников света на промышленных предприятиях:

Правильная установка ламп индукционного типа с соблюдением всех стандартов и норм позволяет эффективно использовать энергосберегающую технологию. Сегодня подобные источники света – разумная альтернатива традиционным подходам к организации освещения.

Индукционные промышленные светильники - это новый тип светотехнического оборудования на отечественном рынке. Для многих покупателей их цена кажется довольно высокой, но несмотря на это популярность современной светотехники стремительно растет.

Чтобы правильно оценить целесообразность приобретения такого осветительного оборудования, необходимо предварительно разобраться с его технико-эксплуатационными показателями, уровнем безопасности, а также сроком службы.

В этой статье:

Область применения

Осветительные системы производственных объектов должны отвечать установленным требованиям. В первую очередь это качественное освещение при минимальных затратах электрической энергии.

Индукционные осветители DAR Light потолочного размещения подходят для организации освещения производственных цехов, складов с продукцией по множеству показателей. Кроме этого, их можно использовать для освещения железнодорожных станций, торговых и выставочных центров, стадионов, прочих объектов.

При организации на предприятии системы освещения с использованием энергосберегающих источников света можно значительно снизить расходы на электричество. В результате рентабельность производственного объекта существенно возрастает.

К сведению! Лампы индукционного типа представляют собой модернизацию энергосберегающих люминесцентных источников света.

Светотехническое оборудование с индукционным источником освещения не требует регулярного обслуживания, в том числе периодической замены ламп после выхода из строя. Это большой плюс при организации осветительных систем помещений с довольно высокими потолками.

Принцип работы

Основа принципа работы таких осветительных систем была заложена еще в прошлом столетии. Но несмотря на это до сегодняшнего дня она на практике не применялась.

Сущность действия индукционных систем освещения DAR Light заключается в нагревании газов, которые находятся в колбе, до плазматического состояния. Такое высокое нагревание достигается благодаря магнитной индукции (магнитное поле создается за счет спирали из проводов, которыми оплетена колба). При этом световой поток имеет высокую степень интенсивности.

К сведению! Эффект выгорания газов минимален, так как они не контактируют с электродами. В результате срок службы ITL HB может достигать 10 лет без потери первоначальной яркости.

Современные индукционные лампы - это усовершенствованные модели знаменитых люминесцентных ламп, которые лишены основных своих недостатков:

  • неустойчивости к перепадам сетевого напряжения;
  • чувствительности к постоянным включениям/выключениям;
  • моргания светового потока;
  • быстрого выгорания ресурса.

Разные модели индукционных ламп отличаются размещением ферритовых колец - с внешней стороны колбы (внешняя индукция), с внутренней стороны колбы, цоколя (внутренняя индукция). Сегодня такие светотехнические системы являются менее востребованными, в отличие от светодиодного освещения, но уже определены многие модели для серийного производства. Соответственно, скоро они составят реальную конкуренцию лидерам светотехники.


Мнение эксперта

Иван Зайцев

Специалист по освещению, консультант в отделе строительных материалов крупной сети магазинов

Задать вопрос эксперту

К сведению! Главным сдерживающим критерием распространенности таких осветителей является специфическая конструкция их колбы. Она не подходит для отражателей, плафонов стандартных приборов освещения. Но современные компактные варианты вполне можно использовать для обычных осветителей.

Достоинства и недостатки индукционных систем освещения

Индукционные светильники, как и любое другое светотехническое оборудование, имеют собственные достоинства:

  • световой поток достаточно яркий и чистый;
  • экономичны и эффективны в эксплуатации - на 80 % меньше потребляют электричества, чем обыкновенные лампы накаливания;
  • световая отдача - 80-90 лм/Вт (зависит от мощности используемой лампы);
  • широкий диапазон мощности - 15-400 Вт;
  • мгновенный запуск осветителя - задержка старта, в отличие от люминесцентных ламп, полностью отсутствует;
  • возможность применения параллельно с диммером;
  • практически не нагреваются;
  • нечувствительны к постоянным включениям/выключениям осветителя;
  • отличаются разными цветами свечения;
  • на протяжении всего эксплуатационного периода яркость практически не теряется;
  • продолжительный срок службы - 60 000 – 150 000 часов, в зависимости от условий эксплуатации;
  • Рабочий диапазон температур - -40…+50 градусов.

Конечно же, не лишены такие источники света и недостатков, к которым можно отнести следующие:

  • при повреждении колбы имеется потенциальная токсичность из-за присутствия в газах вредных компонентов (ртуть);
  • потребность в специализированной утилизации;
  • из-за электромагнитных излучений не подходит для организации освещения объектов, оборудованных тонкой электронной техникой (аэропорты, автозаправки, прочие объекты);
  • колба имеет большие размеры, в результате чего требует использование осветительных приборов особой конструкции;
  • наличие электромагнитных, ультрафиолетовых излучений негативно влияет на человека, поэтому такие светильники нельзя устанавливать ближе метра от людей;
  • колба имеет недостаточную механическую прочность;
  • дорогостоящая светотехника.