Виды парогазовых установок. Принципиальная схема парогазовых установок. Бинарные ПГУ без регенерации

Подходят к концу работы по модернизации на территории Кировской ТЭЦ-3 с применением ПГУ (парогазовой установки). Станция обеспечивает тепловой энергией (отопление и горячая вода) город Кирово-Чепецк и электроэнергией потребителей Кировской области. Электростанция начала свою работу в 1942 году и до ввода в эксплуатацию нового энергетического оборудования установленная электрическая мощность станции составляла 160 МВт, а тепловая - 813 Гкал/ч. На энергетических котлах станции сжигаются - природный газ, мазут, кузнецкий уголь. Применение ПГУ позволит увеличить электрическую и тепловую мощность станции более чем в два раза - до 390 МВт.

Строительство ПГУ 230 МВт на Кировской ТЭЦ-3 началось 29 февраля 2012 года. Энергетиками КЭС-Холдинга за короткое время была проделана огромная работа и уже на лето 2014 года намечено проведение торжественного пуска.

Электрическая мощность парогазовой установки - 230 МВт, тепловая - 136 Гкал/ч. Вводимая парогазовая установка - самое экономичное и экологичное генерирующие оборудование в Кировской области. Отличительная особенность станции - использование первой в регионе градирни вентиляторного типа. Стоимость проекта составила 10,3 млрд.руб.

На сегодняшний день применение парогазовой технологии - оптимальное решение для традиционной тепловой энергетики. Блоки этого типа имеют оптимальные параметры по стоимости единицы установленной мощности и экономической эффективности. За счет повторного использования энергии сгорания газа, их КПД существенно выше традиционных паросиловых блоков. Так, суммарная мощность построенного блока равна 230 мегаваттам. Вся старая часть Кировской ТЭЦ-3 имеет максимальную мощность 149 мегаватт. При этом КПД ПГУ - 52% против 30% на старом блоке. Еще одна особенность ПГУ - это низкий уровень выбросов вредных веществ в атмосферу. Наконец, парогазовый блок имеет существенно меньший строительный цикл в сравнении с традиционными паросиловыми блоками.

Дорога на ПГУ проходит мимо открытого распределительного устройства. Вот где весь Чепецкий асфальт!

Картина маслом "2,5 трубы на ТЭЦ-3".

Труба выведена из эксплуатации и находится в процессе демонтажа.

Новое распределительное устройство.

Новенькие трансформаторы отделены друг от друга огнезащитными перегородками.

Оборудование ОРУ (выключатели, трансформаторы тока и напряжения, разъединители).

Фото с крыши здания РЩУ (Релейный Щит Управления).

Эстакада токопроводов в районе открытой установки трансформаторов.

Новое и старое.

Корпус ТЭЦ-3 - из кирпича, все последующие ТЭЦ построены с применением бетона и ЖБИ.

Теперь пройдемся по этапам получения энергии.

Топливо для ПГУ (газ) подается сначала на пункт подготовки газа, а потом по эстакаде попадает в турбину.

Сверху к газовой турбине подводится очищенный воздух от комплексного очистительного устройства. При этом требования к чистоте воздуха такие, что внутрь воздуховода персонал может войти только в халатах и без обуви. Этот воздух после специальной обработки намного чище того которым мы дышим.

Конструкция внутри здания по размерам сопоставима с двумя грузовыми Ж/Д-вагонами.

Идут работы по монтажу коммуникаций.

Принцип работы этой турбины аналогичен работе двигателя авиалайнера. Воздух очищается, сжимается в компрессоре, затем к нему подводится природный газ. Газы, образующиеся при его сжигании, вращают турбину, а она, в свою очередь, генератор.

Чтобы снизить вибрацию, турбину установили на специальные пружины.

Полученное электричество по токопроводам поступает на трансорматоры.

Далее, продукты сгорания попадают в котел утилизатор. Он также изготовлен отечественной фирмой ОАО «ЭМАльянс». Этот уникальный котлоагрегат спроектирован специально для этого объекта и не имеет аналогов. Его высота составляет 30 метров, он имеет два контура, в которых вырабатывается пар низкого и высокого давления.

Коммуникации наверху.

Труба дымоудаления.

Пар из котла утилизатора вращает паровую турбину Т-63 с генератором мощностью 80 мегаватт. Она изготовлена на Урале специально для этого проекта и предназначена для работы только в составе парогазового блока. В эту турбину вложены последние передовые разработки отечественного турбостроения.

Установкой на фундамент статора турбогенератора (самого тяжелого элемента паровой турбины весом 105 тонн) занимались голландские специалисты фирмы «ALE Heavylift LLC». Они смонтировали специальную такелажную систему и с помощью особых домкратов и сверхпрочных тросов статор в течение нескольких часов поднимали на высоту 20 метров и устанавливали на фундаменте.

Для обслуживания всего оборудования собран мостовой кран.

Баки запаса конденсата.

Главный щит управления.

В помещении сборок задвижек также начали установку оборудования и раскладку кабелей АСУ ТП котельного отделения. Выполнены работы по монтажу конструкций под кабели, идет монтаж кабельных коробов, продолжается прокладка силовых кабелей, подключение оборудования.

Парогазовыми называются энергетические установки (ПГУ) , в которых теплота уходящих газов ГТУ прямо или косвенно используется для выработки электроэнергии в паротурбинном цикле.

На рис. 4.10 показана принципиальная схема простейшей парогазовой установки, так называемого утилизационного типа. Уходящие газы ГТУ поступают в котёл-утилизатор - теплообменник противоточного типа, в котором за счет тепла горячих газов получают пар высоких параметров, направляемый в паровую турбину.

Рисунок 4.10. Принципиальная схема простейшей парогазовой установки

Котёл-утилизатор представляет собой шахту прямоугольного сечения , в которой размещены поверхности нагрева, образованные сребрёнными трубами, внутрь которых подаётся рабочее тело паротурбинной установки (вода или пар). В простейшем случае поверхности нагрева котла-утилизатора состоят из трёх элементов: экономайзера 3, испарителя 2 и пароперегревателя 1. Центральным элементом является испаритель , состоящий из барабана 4 (длинного цилиндра, заполняемого наполовину водой), нескольких опускных труб 7 и достаточно плотно установленных вертикальных труб собственно испарителя 8. Испаритель работает на принципе естественной конвекции . Испарительные трубы находятся в зоне более высоких температур, чем опускные. Поэтому в них вода нагревается, частично испаряется и поэтому становится легче и поднимается вверх в барабан. Освобождающееся место заполняется более холодной водой по опускным трубам из барабана. Насыщенный пар собирается в верхней части барабана и направляется в трубы пароперегревателя 1. Расход пара из барабана 4 компенсируется подводом воды из экономайзера 3. При этом поступающая вода, прежде чем испариться полностью, многократно пройдет через испарительные трубы. Поэтому описанный котёл-утилизатор называется котлом с естественной циркуляцией .

В экономайзере происходит нагрев поступающей питательной воды практически до температуры кипения . Из барабана сухой насыщенный пар поступает в пароперегреватель, где перегревается сверх температуры насыщения. Температура получаемого перегретого пара t 0 всегда, конечно, меньше, чем температура газов q Г , поступающих из газовой турбины (обычно на 25 - 30 °С).

Под схемой котла-утилизатора на рис. 4.10 показано изменение температур газов и рабочего тела при их движении навстречу друг другу. Температура газов плавно уменьшается от значения q Г на входе до значения q ух температуры уходящих газов. Движущаяся навстречу питательная вода повышает в экономайзере свою температуру до температуры кипения (точка а ). С этой температурой (на грани кипения) вода поступает в испаритель. В нём происходит испарение воды. При этом её температура не изменяется (процесс a - b ). В точке b рабочее тело находится в виде сухого насыщенного пара. Далее в пароперегревателе происходит его перегрев до значения t 0 .

Образующийся на выходе из пароперегревателя пар направляется в паровую турбину, где, расширяясь, совершает работу. Из турбины отработанный пар поступает в конденсатор, конденсируется и с помощью питательного насоса 6 , повышающего давление питательной воды, направляется снова в котёл-утилизатор.

Таким образом, принципиальное отличие паросиловой установки (ПСУ) ПГУ от обычной ПСУ ТЭС состоит только в том, что топливо в котле-утилизаторе не сжигается, а необходимая для работы ПСУ ПГУ теплота берётся от уходящих газов ГТУ. Общий вид котла – утилизатора приведен на рис.4.11.

Рисунок 4.11. Общий вид котла – утилизатора

Электростанция с ПГУ показана на рис. 4.12, на котором изображена ТЭС с тремя энергоблоками. Каждый энергоблок состоит из двух рядом стоящих ГТУ 4 типа V94.2 фирмы Siemens , каждая из которых свои уходящие газы высокой температуры направляет в свой котёл-утилизатор 8 . Пар, генерируемый этими котлами, направляется в одну паровую турбину 10 с электрогенератором 9 и конденсатором, расположенным в конденсационном помещении под турбиной. Каждый такой энергоблок имеет суммарную мощность 450 МВт (каждая ГТУ и паровая турбина имеют мощность примерно 150 МВт). Между выходным диффузором 5 и котлом-утилизатором 8 установлена байпасная (обводная) дымовая труба 12 и газоплотный шибер 6 .

Рисунок 4.12. Электростанция с ПГУ

Основные преимущества ПГУ.

1. Парогазовая установка - в настоящее время самый экономичный двигатель, используемый для получения электроэнергии.

2. Парогазовая установка - самый экологически чистый двигатель. В первую очередь это объясняется высоким КПД - ведь вся та теплота, содержащаяся в топливе, которую не удалось преобразовать в электроэнергию, выбрасывается в окружающую среду и происходит её тепловое загрязнение. Поэтому уменьшение тепловых выбросов ПГУ по сравнению с паросиловой примерно соответствует уменьшению расхода топлива на производство электроэнергии.

3. Парогазовая установка - очень маневренный двигатель, с которым в маневренности может сравниться только автономная ГТУ. Потенциально высокая маневренность ПТУ обеспечивается наличием в её схеме ГТУ, изменение нагрузки которой происходит в течение нескольких минут.

4. При одинаковой мощности паросиловой и парогазовой ТЭС потребление охлаждающей воды ПГУ примерно втрое меньше. Это определяется тем, что мощность паросиловой части ПГУ составляет 1/3 от общей мощности, а ГТУ охлаждающей воды практически не требует.

5. ПГУ имеет более низкую стоимость установленной единицы мощности, что связано с меньшим объёмом строительной части, с отсутствием сложного энергетического котла, дорогой дымовой трубы, системы регенеративного подогрева питательной воды, использованием более простых паровой турбины и системы технического водоснабжения.

ЗАКЛЮЧЕНИЕ

Главным недостатком всех тепловых электростанций является то, что все виды применяемого топлива являются невосполнимыми природными ресурсами, которые постепенно заканчиваются. Кроме того, ТЭС потребляют значительное количество топлива (ежедневно одна ГРЭС мощностью 2000 МВт сжигает за сутки два железнодорожных состава угля) и являются самыми экологически «грязными» источниками электроэнергии, особенно если они работают на высокозольных сернистых топливах. Именно поэтому в настоящее время, наряду с использованием атомных и гидравлических электростанций, ведутся разработки электрических станций, использующих восполняемые или другие альтернативные источники энергии. Однако, несмотря ни на что ТЭС являются основными производителями электроэнергии в большинстве стран мира и останутся таковыми, как минимум в ближайшие 50 лет.

КОНТРОЛЬНЫЕ ВОПРОСЫ К ЛЕКЦИИ 4

1. Тепловая схема ТЭЦ – 3 балла.

2. Технологический процесс производства электроэнергии на ТЭС – 3 балла.

3. Компоновка современных ТЭС – 3 балла.

4. Особенности ГТУ. Структурная схема ГТУ. КПД ГТУ – 3 балла.

5. Тепловая схема ГТУ – 3 балла.

6. Особенности ПГУ. Структурная схема ПГУУ. КПД ПГУ – 3 балла.

7. Тепловая схема ПГУ – 3 балла.


ЛЕКЦИЯ 5

АТОМНЫЕ ЭЛЕКТРИЧЕСКИЕ СТАНЦИИ. ТОПЛИВО ДЛЯ АЭС. ПРИНЦИП РАБОТЫ ЯДЕРНОГО РЕАКТОРА. ПРОИЗВОДСТВО ЭЛЕКТРОЭНЕРГИИ НА АЭС С ТЕПЛОВЫМИ РЕАКТОРАМИ. РЕАКТОРЫ НА БЫСТРЫХ НЕЙТРОНАХ. ДОСТОИНСТВА И НЕДОСТАТКИ СОВРЕМЕННЫХ АЭС

Основные понятия

Атомная электростанция (АЭС) это электростанция, вырабатывающая электрическую энергию путём преобразования тепловой энергии, выделяющейся в ядерном реакторе (реакторах) в результате управляемой цепной реакции деления (расщепления) ядер атомов урана. Принципиальное отличие АЭС от ТЭС только в том, что вместо парогенератора используется ядерный реактор - устройство, в котором осуществляется управляемая цепная ядерная реакция, сопровождающаяся выделением энергии.

Радиоактивные свойства у урана впервые обнаружил французский физик Антуан Беккерель в 1896 году. Английский физик Эрнест Резерфорд впервые осуществил искусственную ядерную реакцию под действием – частиц в 1919 году. Немецкие физики Отто Ган и Фриц Штрасман открыли в 1938 году, чтоделение тяжёлых ядер уранапри бомбардировке нейтронами сопровождается выделением энергии. Реальное использование этой энергии стало делом времени.

Первый ядерный реактор построен в декабре 1942 года в США группой физиков Чикагского университета под руководством итальянского физика Энрико Ферми . Впервые была реализована незатухающая реакция деления ядер урана. Ядерный реактор, названный СР-1, состоял из графитовых блоков, между которыми были расположены шары из природного урана и его двуокиси. Быстрые нейтроны, появляющиеся после деления ядер 235 U , замедлялись графитом до тепловых энергий, а затем вызывали новые деления ядер. Реакторы, в которых основная доля делений происходит под действием тепловых нейтронов, называют реакторами на тепловых (медленных) нейтронах; в таких реакторах замедлителя значительно больше чем урана.

В Европе первый ядерный реактор Ф-1 был изготовлен и запущен в декабре 1946 года в Москве группой физиков и инженеров во главе с академиком Игорем Васильевичем Курчатовым . Реактор Ф-1 был набран из графитовых блоков и имел форму шара диаметром примерно 7,5 м. В центральной части шара диаметром 6 м в отверстиях графитовых блоков были размещены урановые стержни. Реактор Ф-1, как и СР-1, не имел системы охлаждения, поэтому работал на малых уровнях мощности: от долей до единиц ватта.

Результаты исследований на реакторе Ф-1 послужили основой проектов для промышленных реакторов. В 1948 году под руководством И. В. Курчатова начались работы по практическому применению энергии атома для получения электроэнергии.

Первая в мире промышленная атомная электростанция мощностью 5 МВт была запущена 27 июня 1954 года в г. Обнинске Калужской области . В 1958 г. была введена в эксплуатацию 1-я очередь Сибирской АЭС мощностью 100 МВт (полная проектная мощность 600 МВт). В том же году развернулось строительство Белоярской промышленной АЭС, а в апреле 1964 г. генератор 1-й очереди дал электроэнергию потребителям. В сентябре 1964 года был пущен 1-й блок Нововоронежской АЭС мощностью 210 МВт. Второй блок мощностью 350 МВт запущен в декабре 1969 года. В 1973 году запущена Ленинградская АЭС.

В Великобритании первая АЭС промышленного назначения мощностью 46 МВт была введена в эксплуатацию в 1956 году в Колдер-Холле. Через год вступила в строй АЭС мощностью 60 МВт в Шиппингпорте (США).

Мировыми лидерами по производству ядерной электроэнергии являются:США (788,6 млрд. кВт ч/год), Франция (426,8 млрд. кВт ч/год), Япония (273,8 млрд. кВт ч/год), Германия (158,4 млрд. кВт ч/год) и Россия (154,7 млрд. кВт ч/год). На начало 2004 года в мире действовал 441 энергетический ядерный реактор, российское ОАО «ТВЭЛ» поставляет топливо для 75 из них.

Крупнейшая АЭС в Европе - Запорожская АЭС г. Энергодар (Украина) - 6 атомных реакторов суммарной мощностью 6 ГВт. Крупнейшая в мире АЭС - Касивадзаки-Карива (Япония) - пять кипящих ядерных реакторов (BWR ) и два продвинутых кипящих ядерных реактора (ABWR ), суммарная мощность которых составляет 8,2 ГВт.

В настоящее время в России работают АЭС: Балаковская, Белоярская, Билибинская, Ростовская, Калининская, Кольская, Курская, Ленинградская, Нововоронежская, Смоленская.

В разработках проекта Энергетической стратегии России на период до 2030 года предусмотрено увеличение производства электроэнергии на атомных электростанциях в 4 раза.

Атомные электростанции классифицируются в соответствии с установленными на них реакторами:

l реакторы на тепловых нейтронах , использующие специальные замедлители для увеличения вероятности поглощения нейтрона ядрами атомов топлива;

l реакторы на быстрых нейтронах .

По виду отпускаемой энергии атомные станции делятся на:

l атомные электростанции (АЭС), предназначенные для выработки только электроэнергии;

l атомные теплоэлектроцентрали (АТЭЦ), вырабатывающие как электроэнергию, так и тепловую энергию.

В настоящее только в России рассматриваются варианты строительства атомных станций теплоснабжения.

АЭС не использует воздух для окисления топлива, не даёт выбросов золы, оксидов серы, углерода и т.д. в атмосферу, имеет радиоактивный фон ниже, чем на ТЭС, но, как и ТЭС, потребляет огромное количество воды для охлаждения конденсаторов.

Топливо для АЭС

Главное отличие АЭС от ТЭС состоит в использовании ядерного горючего вместо органического топлива . Ядерное горючее получают из природного урана, который добывают либо в шахтах (Нигер, Франция, ЮАР), либо в открытых карьерах (Австралия, Намибия), либо способом подземного выщелачивания (Канада, Россия, США). Уран широко распространён в природе, но богатых по содержанию залежей урановых руд нет. Уран содержится в различных горных породах и воде в рассеянном состоянии. Природный уран это смесь в основном неделящегося изотопа урана 238 U (более 99%) и делящегося изотопа 235 U (примерно 0,71%) , который и представляет собой ядерное горючее (1 кг 235 U выделяет энергию равную теплоте сгорания примерно 3000 т каменного угля).

Для работы реакторов АЭС требуется обогащение урана . Для этого природный уран направляется на обогатительный завод, после переработки, на котором 90% природного обеднённого урана направляется на хранение, а 10% обогащается до 3,3 - 4,4 %.

Из обогащённого урана (точнее диоксида урана UO 2 или окиси-закиси урана U 2 O 2 ) изготавливают тепловыделяющие элементы - ТВЭЛы - цилиндрические таблетки диаметром 9 мм и высотой 15-30 мм. Эти таблетки помещают в герметические циркониевые (поглощение нейтронов цирконием в 32,5 раза меньше чем сталью) тонкостенные трубки длиной около 4 м. ТВЭЛы собирают в тепловыделяющие сборки (ТВС) по несколько сотен штук.

Все дальнейшие процессы расщепления ядер 235 U с образованием осколков деления, радиоактивных газов и т.д. происходят внутри герметичных трубок ТВЭЛов .

После постепенного расщепления 235 U и уменьшения его концентрации до 1,26%, когда мощность реактора существенно уменьшается, ТВС извлекают из реактора , некоторое время хранят в бассейне выдержки, а затем направляют на радиохимический завод для переработки.

Таким образом, в отличие от ТЭС, где топливо стремятся сжигать полностью, на АЭС невозможно расщепить ядерное топливо на 100%. Поэтому на АЭС нельзя рассчитать КПД по удельному расходу условного топлива. Для оценки эффективности работы энергоблока АЭС используется КПД нетто

,

где - выработанная энергия, - выделившееся в реакторе тепло заодно и тоже время.

Подсчитанный таким образом КПД АЭС составляет 30 - 32 %, но сравнивать его с КПД ТЭС, составляющим 37 - 40 %, не вполне правомочно.

Кроме изотопа урана 235 в качестве ядерного топлива также используются:

  • изотоп урана 233 ( 233 U ) ;
  • изотоп плутония 239 ( 239 Pu );
  • изотоп тория 232 ( 232 Th ) (посредством преобразования в 233 U ).

К теплоэлектроцентралям (ТЭЦ) относятся электростанции, которые вырабатывают и отпускают потребителям не только электрическую, но и тепловую энергию. При этом в качестве теплоносителей служат пар из промежуточных отборов турбины, частично уже использованный в первых ступенях расширения турбины для выработки электроэнергии, а также горячая вода с температурой 100-150° С, нагреваемая отбираемым из турбины паром. Пар из парового котла поступает по паропроводу в турбину где он расширяется до давления в конденсаторе и потенциальная энергия его преобразуется в механическую работу вращения ротора турбины и соединенного с ним ротора генератора. Часть пара после нескольких ступеней расширения отбирается из турбины и направляется по паропроводу потребителю пара. Место отбора пара, а значит, и его параметры устанавливаются с учетом требований потребителя. Так как теплота на ТЭЦ расходуется на производство электрической и тепловой энергии, то различаются КПД ТЭЦ по производству и отпуску электроэнергии и производству и отпуску теплоэнергии.

Газотурбинные установки (ГТУ) состоят из трех основных элементов: воздушного компрессора, камеры сгорания и газовой турбины. Воздух из атмосферы поступает в компрессор, приводимый в действие пусковым двигателем, и сжимается. Далее под давлением его подают в камеру сгорания, куда одновременно подводится топливным насосом жидкое или газообразное топливо. Для того чтобы снизить температуру газа до приемлемого уровня (750-770° С), в камеру сгорания подают в 3,5-4,5 раза больше воздуха, чем нужно для сгорания топлива. В камере сгорания он разделяется на два потока: один поток поступает внутрь жаровой трубы и обеспечивает полное сгорание топлива, а второй обтекает жаровую трубу снаружи и, подмешиваясь к продуктам сгорания, снижает их температуру. После камеры сгорания газы поступают в газовую турбину, находящуюся на одном валу с компрессором и генератором. Там они, расширяясь (примерно до атмосферного давления), совершают работу, вращая вал турбины, и затем выбрасываются через дымовую трубу. Мощность газовой турбины значительно меньше мощности паровой турбины и в настоящее время КПД около 30%.

Парогазовые установки (ПГУ) представляют собой сочетание паротурбинной (ПТУ) и газотурбинной (ГТУ) установок. Такое объединение позволяет снизить потери отработавшей теплоты газовых турбин или теплоты уходящих газов паровых котлов, что обеспечивает повышение КПД по сравнению с отдельно взятыми ПТУ и ГТУ. Кроме того, при таком объединении достигается ряд конструктивных преимуществ, приводящих к удешевлению установки. Распространение получили два типа ПГУ: с высоконапорными котлами и со сбросом отработавших газов турбины в топочную камеру обычного котла. Высоконапорный котел работает на газовом или очищенном жидком топливе. Дымовые газы, выходящие из котла с высокой температурой и избыточным давлением, направляются в газовую турбину, на одном валу с которой находятся компрессор и генератор. Компрессор нагнетает воздух в топочную камеру котла. Пар из высоконапорного котла направляется к конденсационной турбине, на одном валу с которой находится генератор. Отработавший в турбине пар переходит в конденсатор и после конденсации насосом подается снова в котел. Выхлопные газы турбины подводятся к экономайзеру для подогрева питательной воды котла. В такой схеме не требуется дымосос для удаления отходящих газов высоконапорного котла, функцию дутьевого насоса выполняет компрессор. КПД установки в целом достигает 42-43%. В другой схеме парогазовой установки осуществляется использование теплоты отработавших газов турбины в котле. Возможность сброса отработавших газов турбины в топочную камеру котла основывается на том, что в камере сгорания ГТУ топливо (газ) сжигают с большим избытком воздуха и содержание кислорода в выхлопных газах (16-18%) является достаточным для сжигания основной массы топлива.



29. АЭС: устройство, типы реакторов, параметры, режимные характеристики.

АЭС относятся к тепловым ЭС, т.к. в их устройстве есть тепловыделители, теплоноситель и генератор эл. тока – турбина.

АЭС могут быть конденсационными, теплофикационными (АТЭЦ), атомные станции теплоснабжения (АСТ).

Ядерные реакторы классифицируются по различным признакам:

1. по уровню энергии нейтронов:

На тепловых нейтронах

На быстрых нейтронах

2. по виду замедлителя нейтронов: водными, тяжеловодными, графитовыми.

3. по виду теплоносителя: водными, тяжеловодными, газовыми, жидко металлическими

4. по числу контуров: одно-, двух-, трех- контурные

В современных реакторах для деления ядер исходного топлива используются в основном тепловые нейтроны. Все они имеют прежде всего так называемую активную зону , в которую загружается ядерное топливо, содержащее уран 235 замедлитель (обычно графит или вода). Для сокращения утечки нейтронов из активной зоны последнюю окружают отражателем, выполненным обычно из того же материала, что и замедлитель.

За отражателем снаружи реактора размещается бетонная защита от радиоактивных излучений. Загрузка реактора ядерным топливом обычно значительно превышает критическую. Чтобы по мере выгорания топлива непрерывно поддерживать реактор в критическом состоянии, в активную зону вводят сильный поглотитель нейтронов в виде стержней из карбамида бора. Такие стержни называютрегулирующими или компенсирующими. В процессе деления ядра выделяется большое количество теплоты, которая отводиться теплоносителем в теплообменник парогенератора , где она превращается в рабочее тело – пар. Пар поступает в турбину и вращает ее ротор, вал которого соединен с валом генератора . Отработавший в турбине пар попадает в конденсатор , после которого сконденсированная вода вновь идет в теплообменник, и цикл повторяется.

Парогазовыми называются энергетические установки, в которых теплота уходящих газов ГТУ прямо или косвенно используется для выработки электроэнергии в паротурбинном цикле. Отличается от паросиловых и газотурбинных установок повышенным КПД.

Принципиальная схема парогазовой установки (из лекции Фоминой).

ГТ ЭГ пар

компрессор Котёл утилизатор К

воздух ЭГ

питательная вода

КС – камера сгорания

ГТ – газовая турбина

К – конденсационная паровая турбина

ЭГ – электрогенератор

Парогазовая установка состоит из двух отдельныхустановок: паросиловой и газотурбинной.

В газотурбинной установке турбину вращают газообразные продукты сгорания топлива. Топливом может служить как природный газ, так и продукты нефтянойпромышленности (мазут, солярка). На одном валу с турбиной находится первый генератор, который за счет вращения ротора вырабатывает электрический ток. Проходя через газовую турбину, продукты сгорания отдают ей лишь часть своей энергии и на выходе из газотурбины все ещё имеют высокую температуру. С выхода из газотурбины продукты сгорания попадают в паросиловую установку, в котел-утилизатор, где нагревают воду и образующийся водяной пар. Температура продуктов сгорания достаточна для того, чтобы довести пар до состояния, необходимого для использования в паровой турбине (температура дымовых газов около 500 градусов по Цельсию позволяет получать перегретый пар при давлении около 100атмосфер). Паровая турбина приводит в действие второй электрогенератор.

Перспективы развития ПГУ (из учебника Аметистова).

1. Парогазовая установка - самый экономичный двигатель, используемый для получения электроэнергии. Одноконтурная ПГУ с ГТУ, имеющей начальную температуру примерно 1000 °С, может иметь абсолютный КПД около 42 %, что составит 63 % от теоретического КПД ПГУ. Коэффициент полезного действия трехконтурной ПГУ с промежуточным перегревом пара, в которой температура газов перед газовой турбиной находится на уровне 1450 °С, уже сегодня достигает 60 %, что составляет 82 % от теоретически возможного уровня. Нет сомнений в том, что КПД можно увеличить еще больше.



2. Парогазовая установка - самый экологически чистый двигатель. В первую очередь это объясняется высоким КПД - ведь вся та теплота, содержащаяся в топливе, которую не удалось преобразовать в электроэнергию, выбрасывается в окружающую среду и происходит ее тепловое загрязнение. Поэтому уменьшение тепловых выбросов от ПГУ по сравнению с паросиловой будет ровно в той степени, на сколько меньше расход топлива на производство электроэнергии.

3. Парогазовая установка - очень маневренный двигатель, с которым в маневренности может сравниться только автономная ГТУ.

4. При одинаковой мощности паросиловой и парогазовой ТЭС потребление охлаждающей воды ПГУ примерно втрое меньше.

5. ПГУ имеет умеренную стоимость установленной единицы мощности, что связано с меньшим объемом строительной части, с отсутствием сложного энергетического котла, дорогой дымовой трубы, системы регенеративного подогрева питательной воды, использованием более простых паровой турбины и системы технического водоснабжения.

6. ПГУ имеют существенно меньший строительный цикл. ПГУ, особенно одновальные, можно вводить поэтапно. Это упрощает проблему инвестиций.

Парогазовые установки практически не имеют недостатков, скорее следует говорить об определенных ограничениях и требованиях к оборудованию и топливу. Установки, о которых идет речь, требуют использования природного газа. Для России, где доля используемого для энергетики относительно недорого газа превышает 60 % и половина его используется по экологическим соображениям на ТЭЦ, имеются все возможности для сооружения ПГУ.

Все это говорит о том, что строительство ПГУ является преобладающей тенден­цией в современной теплоэнергетике.

КПД ПГУ утилизационного типа:

ηПГУ = ηГТУ + (1- ηГТУ)*ηКУ*ηПТУ

ПТУ - паротурбинная установка

КУ – котёл-утилизатор

В общем случае КПД ПГУ:

Здесь - Qгту количество теплоты, подведенной к рабочему телу ГТУ;

Qпсу - количество теплоты, подведенной к паровой среде в котле.

1. Принципиальные тепловые схемы отпуска пара и тепла с ТЭЦ. Коэффициент теплофикации α ТЭЦ. Способы покрытия пиковой тепловой нагрузки на ТЭЦ,

ТЭЦ (теплоэлектроцентрали) - предназначены для централизованного снабжения потребителей теплом и электроэнергией. Их отличие от КЭС в том, что они используют тепло отработавшего в турбинах пара для нужд производства, отопления, вентиляции и горячего водоснабжения. Из-за такого совмещения выработки электроэнергии и тепла достигается значительная экономия топлива в сравнении с раздельным энергоснабжением (выработкой электроэнергии на КЭС и тепловой энергии на местных котельных). Благодаря такому способу комбинированного производства, на ТЭЦ достигается достаточно высокий КПД, доходящий до 70%. Поэтому ТЭЦ получили широкое распространение в районах и городах с высоким потреблением тепла. Максимальная мощность ТЭЦ меньше, чем КЭС.

ТЭЦ привязаны к потребителям, т.к. радиус передачи теплоты (пара, горячей воды) составляет приблизительно 15 км. Загородные ТЭЦ передают горячую воду при более высокой начальной температуре на расстояние до 30 км. Пар для производственных нужд давлением 0.8-1.6 МПа может быть передан на расстояние не более 2-3 км. При средней плотности тепловой нагрузки мощность ТЭЦ обычно не превышает 300-500 МВт. Только в крупных городах, таких как Москва или Санкт-Петербург с большой плотностью тепловой нагрузки имеет смысл строить станции мощностью до 1000-1500 МВт.

Мощность ТЭЦ и тип турбогенератора выбирают в соответствии с потребностями в тепле и параметрами пара, используемого в производственных процессах и для отопления. Наибольшее применение получили турбины с одним и двумя регулируемыми отборами пара и конденсаторами (см. рис). Регулируемые отборы позволяют регулировать выработку тепла и электроэнергии.

Режим ТЭЦ - суточный и сезонный - определяется в основном потреблением тепла. Станция работает наиболее экономично, если ее электрическая мощность соответствует отпуску тепла. При этом в конденсаторы поступает минимальное количество пара. Зимой, когда спрос на тепло максимален, при расчетной температуре воздуха в часы работы промпредприятий нагрузка генераторов ТЭЦ близка к номинальной. В периоды, когда потребление тепла мало, например летом, а также зимой при температуре воздуха выше расчетной и в ночные часы электрическая мощность ТЭЦ, соответствующая потреблению тепла, уменьшается. Если энергосистема нуждается в электрической мощности, ТЭЦ должна перейти в смешанный режим, при котором увеличивается поступление пара в части низкого давления турбин и в конденсаторы. Экономичность электростанции при этом снижается.

Максимальная выработка электроэнергии теплофикационными станциями "на тепловом потреблении" возможна только при совместной работе с мощными КЭС и ГЭС, принимающими на себя значительную часть нагрузки в часы снижения потребления тепла.

сравнительный анализ способов регулирования тепловой нагрузки.

Качественное регулирование.

Преимущество: стабильный гидравлический режим тепловых сетей.

Недостатки:

■ низкая надежность источников пиковой тепловой мощности;

■ необходимость применения дорогостоящих методов обработки подпиточной воды теплосети при высоких температурах теплоносителя;

■ повышенный температурный график для компенсации отбора воды на ГВС и связанное с этим снижение выработки электроэнергии на тепловом потреблении;

■ большое транспортное запаздывание (тепловая инерционность) регулирования тепловой нагрузки системы теплоснабжения;

■ высокая интенсивность коррозии трубопроводов из-за работы системы теплоснабжения большую часть отопительного периода с температурами теплоносителя 60-85 ОС;

■ колебания температуры внутреннего воздуха, обусловленные влиянием нагрузки ГВС на работу систем отопления и различным соотношением нагрузок ГВС и отопления у абонентов;

■ снижение качества теплоснабжения при регулировании температуры теплоносителя по средней за несколько часов температуре наружного воздуха, что приводит к колебаниям температуры внутреннего воздуха;

■ при переменной температуре сетевой воды существенно осложняется эксплуатация компенсаторов.

Парогазовые установки производят электричество и тепловую энергию. Парогазовая установка состоит из двух отдельных блоков: паросилового и газотурбинного. Топливом отечественных ПГУ является природный газ, однако им может служить как природный газ, так и продукты нефтехимической промышленности, например мазут. В парогазовых установках на одном валу с газовой турбиной находится первый генератор, который за счет вращения ротора вырабатывает электрический ток. Проходя через газовую турбину, продукты сгорания отдают ей часть своей энергии и далее продукты сгорания попадают в паросиловую установку, в котел-утилизатор, где вырабатывается поступающий на паровую турбину водяной пар.

Сооружение установок комбинированного цикла (или ПГУ) является в последнее время основной тенденцией развития мировой и отечественной теплоэнергетики. Сочетание циклов на базе ГТУ, т.е. газотурбинной установки, и паротурбинной установки (циклов Брайтона и Ренкина соответственно) обеспечивает резкий скачок тепловой экономичности электростанции, при этом около двух третей её мощности приходится на ГТУ. Пар, выработанный за счет тепла отработанных газов ГТУ, как уже отмечалось, приводит в действие паровую турбину.

Общее представление о котлах-утилизаторах в схеме ПГУ можно получить на основе краткого описания КУ типа HRSG:

Котел-утилизатор типа HRSG в составе блока ПГУ предназначен для получения перегретого пара высокого, среднего и низкого давлений за счет использования тепла горячих выхлопных газов ГТУ.

Котел-утилизатор HRSG – вертикального типа, барабанный, с естественной циркуляцией в испарительных контурах высокого, среднего и низкого давлений, с собственным несущим каркасом.

Конструкция котла-утилизатора обеспечивает возможность проведения предпусковых и эксплуатационных водно-химических промывок пароводяного тракта, а также консервации внутренних поверхностей котла при остановах.

По пароводяному тракту гидравлическая схема котла-утилизатора состоит из трёх самостоятельных контуров с различным уровнем давлений:

тракт низкого давления;

тракт среднего давления;

тракт высокого давления.

Поверхности нагрева труб (испарители, пароперегреватели и т.п.) этого котла располагаются горизонтально. Все они имеют змеевиковую конструкцию трубных систем, которые объединяются коллекторами и с помощью отводящей системы трубопроводов, подсоединяются к барабану-сепаратору. При таком исполнении термические напряжения при изменениях нагрузки и пусках существенно ниже, трубные пакеты могут свободно расширяться, что сводит к минимуму риск защемления, приводящего к разрушению труб.

Трубки теплообменников секций ВД, СД и НД изготовлены со сплошным оребрением с учетом конвективного характера теплообмена между горячими газами из ГТУ и поверхностями теплообмена. Оребрение выполнено из углеродистой стали диаметром 62-68 мм и толщиной 1 мм.

Система очистки пара от капель котловой воды упрощенная, в ней отсутствуют внутрибарабанные циклоны, как это предусматривается на обычных паровых котлах. Имеются линии периодической продувки из барабанов, однако не предусмотрены специальные линии периодической продувки испарителей из нижних точек, где эти линии более актуальны в отношении вывода из котла накопившихся шламовых образований.

Из барабана насыщенный пар поступает в пароперегреватель высокого давления.

Котел – утилизатор HRSG работает на отходящих газах газовой турбины блока. По ходу движения дымовых газов поверхности нагрева котла расположены в следующей последовательности:

выходная ступень пароперегревателя ВД;

выходная ступень промперегрева;

вторая часть входной ступени пароперегревателя ВД;

входная ступень промперегрева;

первая часть входной ступени пароперегревателя ВД;

испаритель ВД;

экономайзер ВД вторая ступень;

пароперегреватель СД;

пароперегреватель НД;

экономайзер ВД первая ступень;

испаритель СД;

экономайзер СД выходная часть первой ступени / экономайзер ВД выходная часть первой ступени;

испаритель НД;

экономайзер СД входная часть первой ступени / экономайзер ВД входная часть первой ступени;

подогреватель конденсата (экономайзер НД).

В выхлопной части котла установлен глушитель и заслонка, предотвращающая попадания осадков в котел во время его стоянки.

Более подробные сведения по этому котлу-утилизатору можно найти в нашем примере "