Объем тела вращения в параметрических координатах. Объём тела, полученного вращением арки циклоиды. Как найти площадь в этом случае

Найдём объём тела, порождённого вращением арки циклоиды вокруг её основания. Роберваль находил его, разбив полученное яйцеобразное тело (рис. 5.1) на бесконечно тонкие слои, вписав в эти слои цилиндрики и сложив их объёмы. Доказательство получилось длинное, утомительное и не вполне строгое. Поэтому для его вычисления обратимся к высшей математике. Зададим уравнение циклоиды параметрически.

В интегральном исчислении при изучении объемов пользуется следующим замечанием:

Если кривая, ограничивающая криволинейную трапецию задана параметрическими уравнениями и функции в этих уравнениях удовлетворяют условиям теоремы о замене переменной в определенном интеграле, то объем тела вращения трапеции вокруг оси Ох, будет вычисляться по формуле:

Воспользуемся этой формулой для нахождения нужного нам объема.

Таким же образом вычислим и поверхность этого тела.

L={(x,y): x=a(t - sin t), y=a(1 - cost), 0 ? t ? 2р}

В интегральном исчислении существует следующая формула для нахождения площади поверхности тела вращения вокруг оси х кривой, заданной на отрезке параметрически (t 0 ?t ?t 1):

Применяя эту формулу для нашего уравнения циклоиды получаем:

Рассмотрим также другую поверхность, порождённую вращением арки циклоиды. Для этого построим зеркальное отражение арки циклоиды относительно её основания, и овальную фигуру, образованную циклоидой и её отражением будем вращать вокруг оси KT (рис. 5.2)

Сначала найдём объём тела, образованного вращением арки циклоиды вокруг оси KT. Его объём будем вычислять по формуле(*):

Таким образом, мы посчитали объём половины данного репообразного тела. Тогда весь объём будет равен

Рассмотрим примеры применения полученной формулы, позволяющей вычислять площади фигур, ограниченных параметрически заданными линиями.

Пример.

Вычислить площадь фигуры, ограниченной линией, параметрические уравнения которой имеют вид .

Решение.

В нашем примере параметрически заданная линия представляет собой эллипс с полуосями 2 и 3 единицы. Построим его.

Найдем площадь четверти эллипса, расположенной в первом квадранте. Эта область лежит в интервале . Площадь всей фигуры вычислим, умножив полученное значение на четыре.

Что мы имеем:

Для k = 0 получаем интервал . На этом интервале функция монотонно убывающая (смотрите раздел ). Применяем формулу для вычисления площади и определенный интеграл находим по формуле Ньютона-Лейбница :

Таким образом, площадь исходной фигуры равна .

Замечание.

Возникает логичный вопрос: почему мы брали четверть эллипса, а не половину? Можно было рассмотреть верхнюю (или нижнюю) половину фигуры. Она находится на интервале . Для этого случая мы бы получили

То есть, для k = 0 получаем интервал . На этом интервале функция монотонно убывающая.

Тогда площадь половины эллипса находится как

А вот правую или левую половины эллипса взять не получится.

Параметрическое представление эллипса с центром в начале координат и полуосями a и b имеет вид . Если действовать так же, как и в разобранном примере, то получим формулу для вычисления площади эллипса .

Окружность с центром в начале координат радиуса R через параметр t задается системой уравнений . Если воспользоваться полученной формулой площади эллипса, то сразу можно записать формулу для нахождения площади круга радиуса R : .

Решим еще один пример.

Пример.

Вычислить площадь фигуры, ограниченной кривой, заданной параметрически .

Решение.

Забегая немного вперед, кривая является «вытянутой» астроидой. (Астроида имеет следующее параметрическое представление ).

Остановимся подробно на построении кривой, ограничивающей фигуру. Строить ее мы будем по точкам. Обычно такого построения достаточно для решения большинства задач. В более сложных случаях, несомненно, потребуется детальное исследование параметрически заданной функции с помощью дифференциального исчисления.

В нашем примере .

Эти функции определены для всех действительных значений параметра t , причем, из свойств синуса и косинуса мы знаем, что они периодические с периодом два пи. Таким образом, вычисляя значения функций для некоторых (например ), получим набор точек .

Для удобства занесем значения в таблицу:

Отмечаем точки на плоскости и ПОСЛЕДОВАТЕЛЬНО соединяем их линией.


Вычислим площадь области, расположенной в первой координатной четверти. Для этой области .

При k=0 получаем интервал , на котором функция монотонно убывает. Применяем формулу для нахождения площади:

Полученные определенные интегралы вычислим по формуле Ньютона-Лейбница, а первообразные для формулы Ньютона-Лейбница найдем с помощью рекуррентной формулы вида , где .

Следовательно, площадь четверти фигуры равна , тогда площадь всей фигуры равна .

Аналогично можно показать, что площадь астроиды находится как , а площадь фигуры, ограниченной линией , вычисляется по формуле .

На уроках об уравнении прямой на плоскости и уравнениях прямой в пространстве .

Встречайте старую знакомую:

Криволинейную трапецию гордо венчает график , и, как вы знаете, её площадь рассчитывается с помощью определённого интеграла по элементарной формуле или, если короче: .

Рассмотрим ситуацию, когда эта же функция задана в параметрическом виде .

Как найти площадь в этом случае?

При некотором вполне конкретном значении параметра параметрические уравнения будут определять координаты точки , а при другом вполне конкретном значении – координаты точки . Когда «тэ» изменяется от до включительно, параметрические уравнения как раз и «прорисовывают» кривую . Думаю, на счёт пределов интегрирования стало всё понятно. Теперь в интеграл вместо «икса» и «игрека» подставляем функции и раскрываем дифференциал:

Примечание : подразумевается, что функции непрерывны на промежутке интегрирования и, кроме того, функция монотонна на нём.

Формула объёма тела вращения получается так же просто:

Объём тела, получаемого вращением криволинейной трапеции вокруг оси , рассчитывается по формуле или: . Подставляем в неё параметрические функции , а также пределы интегрирования :

Пожалуйста, занесите обе рабочие формулы в свой справочник.

По моим наблюдениям, задачи на нахождение объёма встречаются довольно редко, и поэтому значительная часть примеров данного урока будет посвящена нахождению площади. Не откладываем дело в долгий ящик:

Пример 1

Вычислить площадь криволинейной трапеции , если

Решение : используем формулу .

Классическая задача по теме, которая разбирается всегда и везде:

Пример 2

Вычислить площадь эллипса

Решение : для определённости полагаем, что параметрические уравнения задают канонический эллипс с центром в начале координат, большой полуосью «а» и малой полуосью «бэ». То есть, по условию нам предложено не что иное, как

найти площадь эллипса

Очевидно, что параметрические функции периодичны, и . Казалось бы, можно заряжать формулу, однако не всё так прозрачно. Выясним направление , в котором параметрические уравнения «вычерчивают» эллипс. В качестве ориентира найдём несколько точек, которые соответствуют наиболее простым значениям параметра:

Легко уловить, что при изменении параметра «тэ» от нуля до «двух пи» параметрические уравнения «вычерчивают» эллипс против часовой стрелки :


В силу симметричности фигуры, вычислим часть площади в 1-й координатной четверти, а результат умножим на 4. Здесь мы наблюдаем принципиально такую же картину, которую я комментировал чуть выше: параметрические уравнения «прорисовывают» дугу эллипса «в противоход» оси , но площадь фигуры считается слева направо! Поэтому нижнему пределу интегрирования соответствует значение , а верхнему пределу – значение .

Как я уже советовал на уроке Площадь в полярных координатах , учетверить результат лучше сразу же :

Интеграл (если у кого-то вдруг обнаружился такой невероятный пробел) разобран на уроке Интегралы от тригонометрических функций .

Ответ :

По сути, мы вывели формулу для нахождения площади эллипса . И если на практике вам встретится задача с конкретными значениями «а» и «бэ», то вы легко сможете выполнить сверку/проверку, поскольку задача решена в общем виде.

Площадь эллипса рассчитывается и в прямоугольных координатах, для этого из уравнения необходимо выразить «игрек» и решить задачу точь-в-точь по образцу Примера №4 статьи Эффективные методы решения определённых интегралов . Обязательно посмотрите на этот пример и сравните, насколько проще вычислить площадь эллипса, если он задан параметрически.

И, конечно же, чуть не забыл, параметрические уравнения могут задавать окружность либо эллипс в неканоническом положении.

Пример 3

Вычислить площадь одной арки циклоиды

Чтобы решить задачу, нужно знать, что такое циклоида или хотя бы чисто формально выполнить чертеж. Примерный образец оформления в конце урока. Впрочем, не буду вас отправлять за тридевять земель, на график этой линии можно посмотреть в следующей задаче:

Пример 4

Решение : параметрические уравнения задают циклоиду, и ограничение указывает на тот факт, что речь идёт о её первой арке , которая «прорисовывается», когда значение параметра изменяется в пределах . Заметьте, что здесь «правильное» направление этой «прорисовки» (слева направо), а значит, не возникнет заморочек с пределами интегрирования. Но зато появится куча других прикольных вещей =) Уравнение задаёт прямую , параллельную оси абсцисс и дополнительное условие (см. линейные неравенства ) сообщает нам о том, что нужно вычислить площадь следующей фигуры:

Искомую заштрихованную фигуру я буду ассоциативно называть «крышей дома», прямоугольник – «стеной дома», а всю конструкцию (стена + крыша) – «фасадом дома». Хотя это сооружение больше напоминает какой-то коровник =)

Чтобы найти площадь «крыши» необходимо из площади «фасада» вычесть площадь «стены».

Сначала займёмся «фасадом». Для нахождения его площади нужно выяснить значения , которые задают точки пересечения прямой с первой аркой циклоиды (точки и ). В параметрическое уравнение подставим :

Тригонометрическое уравнение легко решить, банально взглянув на график косинуса : на промежутке равенству удовлетворяют два корня: . В принципе, всё понятно, но, тем не менее, перестрахуемся и подставим их в уравнение :

– это «иксовая» координата точки ;

– а это «иксовая» координата точки .

Таким образом, мы убедились в том, что значение параметра соответствует точке , а значение – точке .

Вычислим площадь «фасада». Для более компактной записи функция часто дифференцируется прямо под интегралом:

Площадь «стены» можно вычислить «школьным» методом, перемножив длины смежных сторон прямоугольника. Длина очевидна, осталось найти . Она рассчитывается как разность «иксовых» координат точек «цэ» и «бэ» (найдены ранее):

Площадь «стены»:

Разумеется, её не стыдно найти и с помощью простейшего определённого интеграла от функции на отрезке :

В результате, площадь «крыши»:

Ответ :

И, конечно же, при наличии чертежа прикидываем по клеточкам, похож ли полученный результат на правду. Похож.

Следующая задача для самостоятельного решения:

Пример 5

Вычислить площадь фигуры, ограниченной линиями, заданными уравнениями

Кратко систематизируем алгоритм решения:

– В большинстве случаев придётся выполнить чертёж и определить фигуру, площадь которой требуется найти.

– На втором шаге следует понять, каким образом рассчитывается искомая площадь: это может быть одиночная криволинейная трапеция, может быть разность площадей, может быть сумма площадей – короче говоря, все те фишки, которые мы рассматривали на уроке .

– На третьем шаге надо проанализировать, целесообразно ли пользоваться симметрией фигуры (если она симметрична), после чего узнать пределы интегрирования (начальное и конечное значение параметра). Обычно для этого необходимо решить простейшее тригонометрическое уравнение – здесь можно использовать аналитический метод, графический метод или бесхитростный подбор нужных корней по тригонометрической таблице .

! Не забываем , что параметрические уравнения могут «прорисовывать» линию и справа налево, в этом случае делаем соответствующую оговорку и поправку в рабочей формуле.

– И на завершающем этапе проводятся технические вычисления. Правдоподобность полученного ответа всегда приятно оценить по чертежу.

А сейчас долгожданная встреча со звёздой:

Пример 6

Вычислить площадь фигуры, ограниченной линиями, заданными уравнениями

Решение : кривая, заданная уравнениями является астроидой , и линейное неравенство однозначно определяет заштрихованную на чертеже фигуру:

Найдём значения параметра, которые определяют точки пересечения прямой и астроиды. Для этого подставим в параметрическое уравнение :


Способы решения подобного уравнения уже перечислены выше, в частности, эти корни легко подбираются по тригонометрической таблице .

Фигура симметрична относительно оси абсцисс, поэтому вычислим верхнюю половинку площади (синяя штриховка), а результат удвоим.

Подставим значение в параметрическое уравнение :
В результате получена «игрековая» координата верхней (нужной нам) точки пересечения астроиды и прямой.

Правой вершине астроиды, очевидно, соответствует значение . Выполним на всякий случай проверку:
, что и требовалось проверить.

Как и в случае с эллипсом, параметрические уравнения «прорисовывают» дугу астроиды справа налево. Для разнообразия оформлю концовку вторым способом: при изменении параметра в пределах функция убывает, следовательно (не забываем удвоить!!):

Интеграл получился довольно громоздкий, и чтобы «не таскать всё за собой» тут лучше прервать решение и преобразовать подынтегральную функцию отдельно. Стандартно понижаем степень с помощью тригонометрических формул :


Годится, в последнем слагаемом подведём функцию под знак дифференциала :

Ответ :

Да, тяжеловато приходится со звёздами =)

Следующее задание для продвинутых студентов:

Пример 7

Вычислить площадь фигуры, ограниченной линиями, заданными уравнениями

Для его решения будет достаточно материалов, которые мы уже рассмотрели, но привычный путь весьма долог, и сейчас я расскажу ещё об одном эффективном методе. Идея на самом деле знакома из урока Вычисление площади с помощью определённого интеграла – это интегрирование по переменной «игрек» и использование формулы . Подставляя в неё параметрические функции , получаем зеркальную рабочую формулу:

Действительно, ну а чем она хуже «стандартной»? В этом состоит ещё одно преимущество параметрической формы – уравнения способны исполнять роль не только «обычной» , но одновременно и обратной функции .

В данном случае предполагается, что функции непрерывны на промежутке интегрирования и функция монотонна на нём. Причём, если убывает на промежутке интегрирования (параметрические уравнения «прорисовывают» график «в противоход» (внимание!! ) оси ), то следует по уже рассмотренной технологии переставить пределы интегрирования либо изначально поставить «минус» перед интегралом.

Решение и ответ Примера №7 в конце урока.

Заключительный мини-раздел посвящен более редкой задаче:

Как найти объем тела вращения,
если фигура ограничена параметрически заданной линией?

Актуализируем формулу, выведенную в начале урока: . Общая методика решения точно такая же, как и при нахождении площади. Выдерну немногочисленные задачи из своей копилки.

Приветствую вас, уважаемые студенты вуза Аргемоны!

Ещё немного - и курс будет закончен, а сейчас мы займёмся вот чем.

Чжоули чуть взмахнула рукой - и в воздухе проявилась фигура. А точнее, это была прямоугольная трапеция. Она просто висела в воздухе, созданная магической энергией, которая текла по её сторонам, а также клубилась внутри самой трапеции, отчего та вся сверкала и переливалась.
Затем преподаватель чуть заметно сделала круговое движение пальцами руки - и трапеция начала вращаться вокруг невидимой оси. Сначала медленно, потом всё быстрее и быстрее - так, что в воздухе явственно стала проступать объёмная фигура. Казалось, что магическая энергия растекалась по ней.

Далее случилось следующее: сверкающие контуры фигуры и её внутренность стали заполняться каким-то веществом, свечение становилось всё менее заметным, зато сама фигура всё более была похожа на что-то осязаемое. Крупинки материала равномерно распределялись по фигуре. И вот всё закончилось: и вращение, и свечение. В воздухе висел предмет, похожий на воронку. Чжоули аккуратно переместила его на стол.

Ну вот. Примерно так можно материализовать многие предметы - путём вращения каких-то плоских фигур вокруг воображаемых прямых. Конечно, для материализации нужно определённое количество вещества, которое заполнит собой весь образующийся и временно удерживающийся при помощи магической энергии объём. А вот для того, чтобы точно подсчитать, сколько вещества надо, - и нужно знать объём получаемого тела. Иначе, если вещества будет мало, то оно не заполнит собой весь объём и тело может получиться непрочным, с изъянами. А материализовать и ещё удерживать большой избыток вещества - это ненужные затраты магической энергии.
Ну а если у нас ограниченное количество вещества? Тогда, умея вычислять объёмы тел, можно прикинуть, какое по размерам тело мы можем сделать без особых затрат магической энергии.
Насчёт излишков привлечённого материала есть ещё и другая мысль. Куда излишки вещества деваются? Осыпаются, будучи не задействованными? Или налипают на тело как попало?
В общем, тут ещё есть над чем подумать. Если вдруг у вас какие-то мысли появились, то с удовольствием их выслушаю. А пока перейдём к вычислению объёмов тел, полученных таким способом.
Здесь рассматривается несколько случаев.

Случай 1.

Область, которую мы будем вращать, представляет собой самую классическую криволинейную трапецию.

Естественно, что вращать её мы можем только вокруг оси ОХ. Если же эту трапецию сдвинуть вправо по горизонтали так, чтобы она не пересекала ось OY, то её можно вращать и относительно этой оси. Заклинательные формулы для обоих случаев следующие:

Мы с вами уже достаточно хорошо освоили основные магические воздействия на функции, поэтому для вас, думаю, не составит труда при необходимости передвинуть фигуру так в координатных осях, чтобы она располагалась удобно для работы с ней.

Случай 2.

Можно вращать не только классическую криволинейную трапецию, но и фигуру вот такого вида:

При вращении мы получим своеобразное кольцо. А передвинув фигуру в положительную область, мы можем её вращать и относительно оси OY. Тоже получим кольцо или нет. Всё зависит от того, как будет располагаться фигура: если её левая граница пройдёт точно по оси OY, то кольца не получится. Рассчитать объёмы таких тел вращения можно, используя следующие заклинания:

Случай 3.

Вспомним, что у нас есть замечательные кривые, но задающиеся не привычным нам способом, а в параметрическом виде. Такие кривые часто замкнуты. Параметр t должен меняться таким образом, чтобы замкнутая фигура при обходе её по кривой (границе) оставалась слева.

Тогда для вычисления объёмов тел вращения относительно оси ОХ или OY надо использовать вот такие заклинания:

Эти же формулы можно использовать и для случая незамкнутых кривых: когда оба конца лежат на оси ОХ или на оси OY. Фигура-то по-любому получается замкнутой: концы замыкает отрезок оси.

Случай 4.

Часть замечательных кривых у нас задаются полярными координатами (r=r(fi)). И тогда фигуру можно вращать относительно полярной оси. В этом случае декартовая система координат совмещается с полярной и полагается
x=r(fi)*cos(fi)
y=r(fi)*sin(fi)
Таким образом, мы приходим к параметрическому виду кривой, где параметр fi должен меняться так, чтобы при обходе кривой область оставалась слева.
И пользуемся заклинательными формулами из случая 3.

Однако, для случая полярных координат есть и своя заклинательная формула:

Конечно, плоские фигуры можно вращать и относительно любых других прямых, не только относительно осей OX и OY, но эти манипуляции уже более сложные, поэтому мы ограничимся теми случаями, что были рассмотрены в лекции.

А теперь домашнее задание . Я не буду вам давать конкретные фигуры. Мы уже изучили много функций, и мне хочется, чтобы вы сами что-то такое сконструировали, что вам может понадобится в магической практике. Думаю, четырёх примеров на все указанные в лекции случаи будет достаточно.

Разделы: Математика

Тип урока: комбинированный.

Цель урока: научиться вычислять объемы тел вращения с помощью интегралов.

Задачи:

  • закрепить умение выделять криволинейные трапеции из ряда геометрических фигур и отработать навык вычислений площадей криволинейных трапеций;
  • познакомиться с понятием объемной фигуры;
  • научиться вычислять объемы тел вращения;
  • способствовать развитию логического мышления, грамотной математической речи, аккуратности при построении чертежей;
  • воспитывать интерес к предмету, к оперированию математическими понятиями и образами, воспитать волю, самостоятельность, настойчивость при достижении конечного результата.

Ход урока

I. Организационный момент.

Приветствие группы. Сообщение учащимся целей урока.

Рефлексия. Спокойная мелодия.

– Сегодняшний урок мне бы хотелось начать с притчи. “Жил мудрец, который знал все. Один человек захотел доказать, что мудрец знает не все. Зажав в ладонях бабочку, он спросил: “Скажи, мудрец, какая бабочка у меня в руках: мертвая или живая?” А сам думает: “Скажет живая – я ее умертвлю, скажет мертвая – выпущу”. Мудрец, подумав, ответил: “Все в твоих руках”. (Презентация. Слайд )

– Поэтому давайте сегодня плодотворно поработаем, приобретем новый багаж знаний, и полученные умения и навыки будем применять в дальнейшей жизни и в практической деятельности. “Все в Ваших руках”.

II. Повторение ранее изученного материала.

– Давайте вспомним основные моменты ранее изученного материала. Для этого выполним задание “Исключите лишнее слово”. (Слайд.)

(Учащийся выходит к И.Д.с помощью ластика убирает лишнее слово.)

– Правильно “Дифференциал”. Попробуйте оставшиеся слова назвать одним общим словом. (Интегральное исчисление.)

– Давайте вспомним основные этапы и понятия связанные с интегральным исчислением..

“Математическая гроздь”.

Задание. Восстановите пропуски. (Студент выходит и вписывает ручкой необходимые слова.)

– Реферат о применении интегралов мы заслушаем позже.

Работа в тетрадях.

– Формулу Ньютона-Лейбница вывели английский физик Исаака Ньютона (1643–1727) и немецкий философ Готфрида Лейбница (1646–1716). И это не удивительно, ведь математика – язык, на котором говорит сама природа.

– Рассмотрим, как при решении практических заданий используется эта формула.

Пример 1: Вычислить площадь фигуры, ограниченной линиями

Решение: Построим на координатной плоскости графики функций . Выделим площадь фигуры, которую надо найти.

III. Изучение нового материала.

– Обратите внимание на экран. Что изображено на первом рисунке? (Слайд) (На рисунке представлена плоская фигура.)

– Что изображено на втором рисунке? Является ли эта фигура плоской? (Слайд) (На рисунке представлена объемная фигура.)

– В космосе, на земле и в повседневной жизни мы встречаемся не только с плоскими фигурами, но и объемными, а как же вычислить объем таких тел? Например объем планеты, каметы, метеорита, и т.д.

– Об объеме задумываются и строя дома, и переливая воду из одного сосуда в другой. Правила и приёмы вычисления объёмов должны были возникать, другое дело, насколько они были точны и обоснованны.

Сообщение студентки. (Тюрина Вера.)

1612 год был для жителей австрийского города Линц, где жил тогда известный астроном Иоганн Кеплер очень урожайным, особенно на виноград. Люди заготовляли винные бочки и хотели знать, как практически определить их объёмы. (Слайд 2)

– Таким образом, рассмотренные работы Кеплера положили начало целому потоку исследований, увенчавшихся в последней четверти XVII в. оформлением в трудах И. Ньютона и Г.В. Лейбница дифференциального и интегрального исчисления. Математика переменных величии заняла с этого времени ведущее место в системе математических знаний.

– Вот сегодня мы с вами и займемся такой практической деятельностью, следовательно,

Тема нашего урока: “Вычисление объемов тел вращения с помощью определенного интеграла”. (Слайд)

– Определение тела вращения вы узнаете, выполнив следующее задание.

“Лабиринт”.

Лабиринт (греческое слово) означает ход в подземелье. Лабиринт– запутанная сеть дорожек, ходов, сообщающихся друг с другом помещений.

Но определение “разбилось”, остались подсказки в виде стрелок.

Задание. Найдите выход из запутанного положения и запишите определение.

Слайд. “Карта инструктаж” Вычисление объемов.

При помощи определенного интеграла можно вычислить объем того или иного тела, в частности, тела вращения.

Телом вращения называется тело, полученное вращением криволинейной трапеции вокруг ее основания (рис. 1, 2)

Объем тела вращения вычисляется по одной из формул:

1. вокруг оси ОХ.

2. , если вращение криволинейной трапеции вокруг оси ОУ.

Карту инструктаж получает каждый студент. Преподаватель подчеркивает основные моменты.

– Преподаватель объясняет решение примеров на доске.

Рассмотрим отрывок из известной сказки А. С. Пушкина “Сказка о царе Салтане, о сыне его славном и могучем богатыре князе Гвидоне Салтановиче и о прекрасной царевне Лебеде” (Слайд 4):

…..
И привез гонец хмельной
В тот же день приказ такой:
“Царь велит своим боярам,
Времени не тратя даром,
И царицу и приплод
Тайно бросить в бездну вод”.
Делать нечего: бояре,
Потужив о государе
И царице молодой,
В спальню к ней пришли толпой.
Объявили царску волю –
Ей и сыну злую долю,
Прочитали вслух указ,
И царицу в тот же час
В бочку с сыном посадили,
Засмолили, покатили
И пустили в окиян –
Так велел-де царь Салтан.

Какими же должен быть объем бочки, чтобы в ней поместились царица и её сын?

– Рассмотрим следующие задания

1. Найти объем тела, получаемого вращением вокруг оси ординат криволинейной трапеции, ограниченной линиями: x 2 + y 2 = 64, y = -5, y = 5, x = 0.

Ответ: 1163 cm 3 .

Найти объем тела, получаемого вращением параболической трапеции, вокруг оси абсцисс y = , x = 4, y = 0.

IV. Закрепление нового материала

Пример 2. Вычислить объем тела, образованного вращением лепестка, вокруг оси абсцисс y = x 2 , y 2 = x.

Построим графики функции. y = x 2 , y 2 = x . График y 2 = x преобразуем к виду y = .

Имеем V = V 1 – V 2 Вычислим объем каждой функции

– Теперь, давайте, рассмотрим башню для радиостанции в Москве на Шаболовке, построенной по проекту замечательного русского инженера, почётного академика В. Г. Шухова. Она состоит из частей – гиперболоидов вращения. Причём, каждый из них изготовлен из прямолинейных металлических стержней, соединяющих соседние окружности (рис.8, 9).

– Рассмотрим задачу.

Найти объем тела, получаемого вращением дуг гиперболы вокруг ее мнимой оси, как показано на рис. 8, где

куб. ед.

Задания по группам. Учащиеся вытягивают жребий с задачами, рисунки выполняют на ватмане, один из представителей группы защищает работу.

1-я группа.

Удар! Удар! Ещё удар!
Летит в ворота мячик – ШАР!
А это– шар арбузный
Зелёный, круглый, вкусный.
Вглядитесь лучше – шар каков!
Он сделан из одних кругов.
Разрежьте на круги арбуз
И их попробуйте на вкус.

Найти объем тела, получаемого вращением вокруг оси ОХ функции, ограниченную

Ошибка! Закладка не определена.

– Скажите, пожалуйста, где мы встречаемся с данной фигурой?

Дом. задание для 1 группы. ЦИЛИНДР (слайд) .

"Цилиндр – что такое?" – спросил я у папы.
Отец рассмеялся: Цилиндр – это шляпа.
Чтобы иметь представление верное,
Цилиндр, скажем так, это банка консервная.
Труба парохода – цилиндр,
Труба на нашей крыше – тоже,

Все трубы на цилиндр похожи.
А я привёл пример такой –
Калейдоскоп любимый мой,
Глаз от него не оторвёшь,
И тоже на цилиндр похож.

– Задание. Домашняя работа составить график функции и вычислить объем.

2-я группа. КОНУС (слайд) .

Сказала мама: А сейчас
Про конус будет мой рассказ.
В высокой шапке звездочёт
Считает звёзды круглый год.
КОНУС – шляпа звездочёта.
Вот какой он. Понял? То-то.
Мама у стола стояла,
В бутылки масло разливала.
– Где воронка? Нет воронки.
Поищи. Не стой в сторонке.
– Мама, с места я не тронусь,
Расскажи ещё про конус.
– Воронка и есть в виде конуса лейка.
Ну-ка, найди мне её поскорей-ка.
Воронку я найти не смог,
Но мама сделала кулёк,
Картон вкруг пальца обкрутила
И ловко скрепкой закрепила.
Масло льётся, мама рада,
Конус вышел то, что надо.

Задание. Вычислить объем тела полученный вращением вокруг оси абсцисс

Дом. задание для 2-й группы. ПИРАМИДА (слайд).

Я видел картину. На этой картине
Стоит ПИРАМИДА в песчаной пустыне.
Всё в пирамиде необычайно,
Какая-то есть в ней загадка и тайна.
А Спасская башня на площади Красной
И детям, и взрослым знакома прекрасно.
Посмотришь на башню – обычная с виду,
А что на вершине у ней? Пирамида!

Задание. Домашняя работа составить график функции и вычислить объем пирамиды

– Объёмы различных тел мы вычисляли опираясь на основную формулу объёмов тел с помощью интеграла.

Это является ещё одним подтверждением того, что определённый интеграл есть некоторый фундамент для изучения математики.

– Ну а теперь давайте немного отдохнем.

Найди пару.

Математическое домино мелодия играет.

“Дорога та, что сам искал, вовек не позабудется…”

Исследовательская работа. Применение интеграла в экономике и технике.

Тесты для сильных учащихся и математический футбол.

Математический тренажер.

2. Совокупность всех первообразных от данной функции называется

А) неопределенным интегралом,

Б) функцией,

В) дифференциацией.

7. Найти объем тела, получаемого вращением вокруг оси абсцисс криволинейной трапеции, ограниченной линиями:

Д/З. Вычислить объемы тел вращения.

Рефлексия.

Приём рефлексии в форме синквейна (пятистишия).

1-я строка – название темы (одно существительное).

2-я строка – описание темы в двух словах, два прилагательных.

3-я строка – описание действия в рамках этой темы тремя словами.

4-я строка – фраза их четырёх слов, показывает отношение к теме (целое предложение).

5-я строка – синоним, который повторяет суть темы.

  1. Объем.
  2. Определенный интеграл, интегрируемая функция.
  3. Строим, вращаем, вычисляем.
  4. Тело, полученное вращением криволинейной трапеции (вокруг ее основания).
  5. Тело вращения (объемное геометрическое тело).

Вывод (слайд) .

  • Определенный интеграл – это некоторый фундамент для изучения математики, которая вносит незаменимый вклад в решение задач практического содержания.
  • Тема “Интеграл” ярко демонстрирует связь математики с физикой, биологией, экономикой и техникой.
  • Развитие современной науки немыслимо без использования интеграла. В связи с этим, начинать его изучение необходимо в рамках средне специального образования!

Выставление оценок. (С комментированием.)

Великий Омар Хайям – математик, поэт, философ. Он призывает быть хозяевами своей судьбы. Слушаем отрывок из его произведения:

Ты скажешь, эта жизнь – одно мгновенье.
Её цени, в ней черпай вдохновенье.
Как проведёшь её, так и пройдёт.
Не забывай: она – твоё творенье.