Конденсаторы группы тке. Кодовая и цветовая маркировака конденсаторов. Номинальное напряжение, В

"Справочник" - информация по различным электронным компонентам : транзисторам , микросхемам , трансформаторам , конденсаторам , светодиодам и т.д. Информация содержит все, необходимые для подбора компонентов и проведения инженерных расчетов, параметры, а также цоколевку корпусов, типовые схемы включения и рекомендации по использованию радиоэлементов .

Допуски

В соответствии с требованиями Публикаций 62 и 115-2 IEC для конденсаторов установлены следующие допуски и их кодировка:

Таблица 1

*-Для конденсаторов емкостью

Перерасчет допуска из % (δ) в фарады (Δ):

Δ=(δхС/100%)[Ф]

Пример:

Реальное значение конденсатора с маркировкой 221J (0.22 нФ ±5%) лежит в диапазоне: С=0.22 нФ ± Δ = (0.22 ±0.01) нФ, где Δ= (0.22 х 10 -9 [Ф] х 5) х 0.01 = 0.01 нФ, или, соответственно, от 0.21 до 0.23 нФ.

Температурный коэффициент емкости (ТКЕ)
Маркировка конденсаторов с ненормируемым ТКЕ

Таблица 2

* Современная цветовая кодировка, Цветные полоски или точки. Второй цвет может быть представлен цветом корпуса.

Маркировка конденсаторов с линейной зависимостью от температуры

Таблица 3

Обозначение
ГОСТ
Обозначение
международное
ТКЕ
*
Буквенный
код
Цвет**
П100 P100 100 (+130...-49) A красный+фиолетовый
П33 33 N серый
МПО NPO 0(+30..-75) С черный
М33 N030 -33(+30...-80] Н коричневый
М75 N080 -75(+30...-80) L красный
M150 N150 -150(+30...-105) Р оранжевый
М220 N220 -220(+30...-120) R желтый
М330 N330 -330(+60...-180) S зеленый
М470 N470 -470(+60...-210) Т голубой
М750 N750 -750(+120...-330) U фиолетовый
М1500 N1500 -500(-250...-670) V оранжевый+оранжевый
М2200 N2200 -2200 К желтый+оранжевый

* В скобках приведен реальный разброс для импортных конденсаторов в диапазоне температур -55...+85 ° С.

** Современная цветовая кодировка в соответствии с EIA. Цветные полоски или точки. Второй цвет может быть представлен цветом корпуса.

Маркировка конденсаторов с нелинейной зависимостью от температуры

Таблица 4

Группа ТКЕ* Допуск[%] Температура**[ ° C] Буквенный
код ***
Цвет***
Y5F ±7,5 -30...+85
Y5P ±10 -30...+85 серебряный
Y5R -30...+85 R серый
Y5S ±22 -30...+85 S коричневый
Y5U +22...-56 -30...+85 A
Y5V(2F) +22...-82 -30...+85
X5F ±7,5 -55...+85
Х5Р ±10 -55...+85
X5S ±22 -55...+85
X5U +22...-56 -55...+85 синий
X5V +22...-82 -55..+86
X7R(2R) ±15 -55...+125
Z5F ±7,5 -10...+85 В
Z5P ±10 -10...+85 С
Z5S ±22 -10...+85
Z5U(2E) +22...-56 -10...+85 E
Z5V +22...-82 -10...+85 F зеленый
SL0(GP) +150...-1500 -55...+150 Nil белый

* Обозначение приведено в соответствии со стандартом EIA, в скобках - IEC.

** В зависимости от технологий, которыми обладает фирма, диапазон может быть другим. Например: фирма "Philips" для группы Y5P нормирует -55...+125 °С.

*** В соответствии с EIA. Некоторые фирмы, например "Panasonic", пользуются другой кодировкой.

Таблица 5

Метки
полосы, кольца, точки
1 2 3 4 5 6
3 метки* 1-я цифра 2-я цифра Множитель - - -
4 метки 1-я цифра 2-я цифра Множитель Допуск - -
4 метки 1-я цифра 2-я цифра Множитель Напряжение - -
4 метки 1 и 2-я цифры Множитель Допуск Напряжение - -
5 меток 1-я цифра 2-я цифра Множитель Допуск Напряжение -
5 меток" 1-я цифра 2-я цифра Множитель Допуск ТКЕ -
6 меток 1-я цифра 2-я цифра 3-я цифра Множитель Допуск ТКЕ

* Допуск 20%; возможно сочетание двух колец и точки, указывающей на множитель.

** Цвет корпуса указывает на значение рабочего напряжения.

Таблица 6

Таблица 7

Цвет 1-я цифра
пФ
2-я цифра
пФ
3-я цифра
пФ
Множитель Допуск ТКЕ
Серебряный 0,01 10% Y5P
Золотой 0,1 5%
Черный 0 0 1 20%* NPO
Коричневый 1 1 1 10 1%** Y56/N33
Красный 2 2 2 100 2% N75
Оранжевый 3 3 3 10 3 N150
Желтый 4 4 4 10 4 N220
Зеленый 5 5 5 10 5 N330
Голубой 6 6 6 10 6 N470
Фиолетовый 7 7 7 10 7 N750
Серый 8 8 8 10 8 30% Y5R
Белый 9 9 9 +80/-20% SL

* Для емкостей меньше 10 пФ допуск ±2,0 пФ.
** Для емкостей меньше 10 пФ допуск±0,1 пФ.

Таблица 8

Для маркировки пленочных конденсаторов используют 5 цветных полос или точек. Первые три кодируют значение номинальной емкости, четвертая - допуск, пятая - номинальное рабочее напряжение.

Таблица 9

Номинальная емкость [мкФ] Допуск Напряжение
0,01 ±10% 250
0,015
0,02
0,03
0,04
0,06
0,10
0,15
0,22
0,33 ±20 400
0,47
0,68
1,0
1,5
2,2
3,3
4,7
6,8
1 полоса 2 полоса 3 полоса 4 полоса 5 полоса

Кодовая маркировка конденсаторов

В соответствии со стандартами IEC на практике применяется четыре способа кодировки номинальной емкости.

А. Маркировка 3 цифрами

Первые две цифры указывают на значение емкости в пигофарадах (пф), последняя - количество нулей. Когда конденсатор имеет емкость менее 10 пФ, то последняя цифра может быть "9". При емкостях меньше 1.0 пФ первая цифра "0". Буква R используется в качестве десятичной запятой. Например, код 010 равен 1.0 пФ, код 0R5 - 0.5 пф.

Таблица 10

Код Емкость [пФ] Емкость [нФ] Емкость [мкФ]
109 1,0 0,001 0,000001
159 1,5 0,0015 0,000001
229 2,2 0,0022 0,000001
339 3,3 0,0033 0,000001
479 4,7 0,0047 0,000001
689 6,8 0,0068 0,000001
100* 10 0,01 0,00001
150 15 0,015 0,000015
220 22 0,022 0,000022
330 33 0,033 0,000033
470 47 0,047 0,000047
680 68 0,068 0,000068
101 100 0,1 0,0001
151 150 0,15 0,00015
221 220 0,22 0,00022
331 330 0,33 0,00033
471 470 0,47 0,00047
681 680 0,68 0,00068
102 1000 1,0 0,001
152 1500 1,5 0,0015
222 2200 2,2 0,0022
332 3300 3,3 0,0033
472 4700 4,7 0,0047
682 6800 6,8 0,0068
103 10000 10 0,01
153 15000 15 0,015
223 22000 22 0,022
333 33000 33 0,033
473 47000 47 0,047
683 68000 68 0,068
104 100000 100 0,1
154 150000 150 0,15
224 220000 220 0,22
334 330000 330 0,33
474 470000 470 0,47
684 680000 680 0,68
105 1000000 1000 1,0

* Иногда последний ноль не указывают.

В. Маркировка 4 цифрами

Возможны варианты кодирования 4-значным числом. Но и в этом случае последняя цифра указывает количество нулей, а первые три - емкость в пикофарадах.

Таблица 11

D. Смешанная буквенно-цифровая маркировка емкости, допуска, ТКЕ, рабочего напряжения

В отличие от первых трех параметров, которые маркируются в соответствии со стандартами, рабочее напряжение у разных фирм имеет различную буквенно-цифровую маркировку.

Таблица 13

Кодовая маркировка кондесаторов электролетических для поверхностного монтажа

Приведенные ниже принципы кодовой маркировки применяются такими известными фирмами, как "Panasonic", "Hitachi" и др. Различают три основных способа кодирования

А. Маркировка 2 или 3 символами

Код содержит два или три знака (буквы или цифры), обозначающие рабочее напряжение и номинальную емкость. Причем буквы обозначают напряжение и емкость, а цифра указывает множитель. В случае двухзначного обозначения не указывается код рабочего напряжения.

Таблица 14

Код Емкость [мкФ] Напряжение [В]
А6 1,0 16/35
А7 10 4
АА7 10 10
АЕ7 15 10
AJ6 2,2 10
AJ7 22 10
AN6 3,3 10
AN7 33 10
AS6 4,7 10
AW6 6,8 10
СА7 10 16
СЕ6 1,5 16
СЕ7 15 16
CJ6 2,2 16
CN6 3,3 16
CS6 4,7 16
CW6 6,8 16
DA6 1,0 20
DA7 10 20
DE6 1,5 20
DJ6 2,2 20
DN6 3,3 20
DS6 4,7 20
DW6 6,8 20
Е6 1,5 10/25
ЕА6 1,0 25
ЕЕ6 1,5 25
EJ6 2,2 25
EN6 3,3 25
ES6 4,7 25
EW5 0,68 25
GA7 10 4
GE7 15 4
GJ7 22 4
GN7 33 4
GS6 4,7 4
GS7 47 4
GW6 6,8 4
GW7 68 4
J6 2,2 6,3/7/20
JA7 10 6,3/7
JE7 15 6,3/7
JJ7 22 6,3/7
JN6 3,3 6,3/7
JN7 33 6,3/7
JS6 4,7 6,3/7
JS7 47 6,3/7
JW6 6,8 6,3/7
N5 0,33 35
N6 3,3 4/16
S5 0,47 25/35
VA6 1,0 35
VE6 1,5 35
VJ6 2,2 35
VN6 3,3 35
VS5 0,47 35
VW5 0,68 35
W5 0,68 20/35

В. Маркировка 4 символами

Код содержит четыре знака (буквы и цифры), обозначающие емкость и рабочее напряжение. Буква, стоящая вначале, обозначает рабочее напряжение, последующие знаки - номинальную емкость в пикофарадах (пФ), а последняя цифра - количество нулей. Возможны 2 варианта кодировки емкости: а) первые две цифры указывают номинал в пикофарадах, третья - количество нулей; б) емкость указывают в микрофарадах, знак m выполняет функцию десятичной запятой. Ниже приведены примеры маркировки конденсаторов емкостью 4.7 мкФ и рабочим напряжением 10 В.

С. Маркировка в две строки

Если величина корпуса позволяет, то код располагается в две строки: на верхней строке указывается номинал емкости, на второй строке - рабочее напряжение. Емкость может указываться непосредственно в микрофарадах (мкФ) или в пикофарадах (пф) с указанием количества нулей (см. способ В). Например, первая строка - 15, вторая строка - 35V - означает, что конденсатор имеет емкость 15 мкФ и рабочее напряжение 35 В.

Маркировка конденсаторов пленочных для поверхностного монтажа фирмы "HITACHI"

  • Сергей / 26.01.2019 - 07:51
    Подскажите пожалуйста! На конденсаторе написано 182K 2KV что означает и хочу знать на отечественные. У МЕНЯ СГОРЕЛ конденсатор.
  • Дмитрий / 10.09.2018 - 10:40
    Чем отличается 105к от 104к. Если стоял 104к, можно за место него поставить 105к.
  • Алексей / 07.11.2017 - 11:55
    Как расшифровать конденсатор F 6-8J MD 250V 1133
  • Ален / 06.08.2017 - 12:51
    Здравствуйте! Пожалуйста подскажите, каким конденсатором можно заменить 101 конденсатор 0,0001 микрафарат.
  • МИХАИЛ ГРИГОРЬЕВИЧ ЦАРЕВ / 15.07.2017 - 17:03
    полярный конденсатор 6F(M)Y7A В БЛОКЕ ПИТАНИЯ ТЕЛЕВИЗОР СУПРА ШАССИ T.MS6M48.1C во вторичной цепи питания
  • Михаил / 16.01.2017 - 15:15
    В рации mj333 конденсатор 68pch(2012)помогите расшифровать
  • Виталий / 16.11.2016 - 12:17
    Подскажите пожалуйста расшифровку кондера K73-17В 330hK и чем его можно заменить.
  • Александр / 06.07.2016 - 02:05
    что обозначает пленочный конденсатор свв13 9200j400 подскажите пожалуйста,
  • Александр / 06.07.2016 - 01:57
    что обозначает пленочный конденсатор свв13 9200j400
  • Игорь Викторович / 08.06.2016 - 23:26
    как расшифровать конденсатор в182к?
  • Анатолий / 06.06.2016 - 02:27
    Спасибо за расшифровку буквенных кодов допусков!:-)
  • Вадим / 30.03.2016 - 09:47
    Подскажите что это за такое?В панели приборов сгоревшая деталь,зелёная,плоская,круглая на двух ножках маркировка толи U103M или J103M
  • Вася / 22.02.2016 - 20:20
    Пожалоста скажите что ето за маркировка кондера кт 1,0/10 160 40/100/21 88 болше нет никакого обозначения.ВЗЯТ С немецкого "роботрона"?ПОДСКАЖИТЕ возможную замену пожалоста?
  • У них посложней. Обычно на корпус конденсатора наносят следующую информацию:

    Номинальная емкость;

    Номинальное (максимально допустимое) напряжение;

    ТКЕ (температурный коэффициент емкости).

    Допуск и ТКЕ указываются только у «хороших» конденсаторов, т. е. пленочных, керамических и слюдяных; у полярных конденсаторов эти два параметра столь огромны, что их даже не указывают. В «жизненно важных» местах устройства полярные можно использовать только для фильтрации напряжения питания.

    Начнем с отечественных неполярных конденсаторов. У конденсаторов емкостью до 100 пФ параметры на корпусе чаще всего вообще не указываются. С чем это связано, мне неизвестно, возможно, предприятиям-изготовителям жалко тратить краску на такую «мелочевку». Емкость таких конденсаторов можно узнать только косвенным путем, измерив их Х с на некоторой точно известной частоте f и подставив эти данные в формулу:

    где U reH - выходное переменное напряжение генератора, В; 1 с - ток через , мА; f reH - , кГц; С - емкость конденсатора, пФ; 2π « 6,28. Диапазон емкостей «цветных» конденсаторов указан в табл. 3.3. Данные ззяты из статьи А. Перуцкого, «Радиомир», № 8, 2003, с. 3.

    Но на некоторых конденсаторах такой емкости и на большинстве конденсаторов большей емкости параметры указываются. Емкость обозначается цифрами, буква «р» (по старому стандарту - «П») означает «пикофарады», «п» («Н») - «нанофарады», «μ» - «микрофарады». Емкость шифруется так же, как и , т. e. «47Н» означает 47 нФ (0,047 мкФ), а «Н47», или «470р» - 470 пФ (0,47 нФ). Если емкость конденсатора выражается в пикофарадах, то букву «р» или «П» на его корпусе обычно не рисуют, т. е. если на конденсаторе стоит «1000» без всяких дополнительных опознавательных знаков, то его емкость равна 1000 пФ.

    Приблизительную емкость пленочных и слюдяных конденсаторов можно определить по размеру их корпуса: чем больше емкость при том же максимально допустимом напряжении, тем больше размер корпуса. При увеличении максимально допустимого рабочего напряжения габариты конденсатора тоже увеличиваются. У керамических конденсаторов разной емкости используются разные диэлектрики с разной диэлектрической проницаемостью, поэтому у двух конденсаторов одинаковых размеров емкость может отличаться в сотни…тысячи раз. Но чем больше диэлектрическая проницаемость используемого диэлектрика, т. е. чем меньше отношение «площадь поверхности конденсатора х его емкость», тем выше внутреннее . Поэтому использовать керамические для фильтрации высокочастотных помех и пульсаций в шинах питания и других цепях, по которым протекает значительный высокочастотный ток, нежелательно. Идеальны слюдяные, но они «большие» и дорогие, поэтому в таких цепях лучше использовать пленочные .

    Допуск у конденсаторов бывает в пределах 5…20%, и обозначается он теми же буквами (они всегда заглавные - «большие»), что и у резисторов. Причем если емкость помечена латинскими буквами (р, п, м), то и допуск отмечается латинскими. Кстати, русские свои детали с 5-процентным допуском помечают буквой «I», а все остальные страны - буквой «J».

    ТКЕ у конденсаторов чаще всего незначителен, но в некоторых устройствах (задающие ) желательно, чтобы он вообще был равен нулю. Возникает он из-за того, что при нагреве конденсатора его диэлектрик очень незначительно расширяется, расстояние между обкладками увеличивается, из-за этого емкость конденсатора уменьшается. То есть у такого конденсатора ТКЕ отрицательный. Есть и с положительным ТКЕ. Этот коэффициент максимален (по модулю) у керамических конденсаторов, и чем больше емкость конденсатора, а его размеры - меньше, тем больше ТКЕ. У пленочных конденсаторов ТКЕ крайне мал (и обычно отрицателен), а у слюдяных вообще практически равен нулю.

    Узнать, на сколько изменится емкость конденсатора при изменении температуры можно по формуле:

    где С - емкость конденсатора при начальной температуре; С Д1 - емкость конденсатора при изменении температуры на At (в градусах Цельсия или Кельвина).

    Делить на миллион обязательно - ТКЕ крайне малая величина, и, если ее перед нанесением на корпус конденсатора не умножить на это число, будет слишком много нулей после запятой.

    ТКЕ у всех конденсаторов нормирован и может быть равным (по отечественному стандарту он обозначается на корпусе конденсатора как «МПО», по европейскому - «NPO», «COG», «СОН», «СН» - это одно и то же); -47 (М47 - по старому отечественному стандарту; на корпусах отечественных конденсаторов, номинал и допуск которых указан латинскими буквами, он обозначается буквой «U»); -75 (М75, «М»); -750 (М750, N750 - европейский стандарт, «Т»); -1500 (М1500, «V»); +100 (П100). У конденсаторов большой емкости (керамические, более 0,01 мкФ) ТКЕ уж очень большой и под воздействием температуры емкость конденсатора может изменяться на 30% (НЗО, «D», X7R, Х7В), 70% (Н70) или 90% (Н90, «F»); у импортных конденсаторов максимальное изменение емкости - 50% (Y5V, Z5U) при изменении температуры на 50…80 °С.

    Также емкость керамических конденсаторов изменяется и под воздействием напряжения. У конденсаторов Y5V при увеличении напряжения от 5 до 40 В емкость уменьшается на 70%.

    Рис. 3.27. Расшифровка маркировки конденсаторов

    На импортных конденсаторах емкость обозначается только в зашифрованном виде - без всяких букв. Она обозначается или как у резисторов для поверхностного монтажа (в пикофарадах, первые две цифры - номинал, третья - количество нулей; «100» и «101» - это 100 пФ; у конденсаторов емкостью до 100 пФ верхняя часть корпуса (примерно 1/10, со стороны названия) иногда закрашивается краской; емкость конденсаторов 1…9 пФ обозначается одной цифрой и может быть любой, емкость всех остальных конденсаторов подчиняется ряду Е24), или в единицах АЕС (в микрофарадах, причем нуль до запятой (вернее, точки) не ставится, т. е. на конденсаторе емкостью 2200 пФ будет написано «.0022», что соответствует 0,0022 мкФ). Значение допуска, максимально допустимого напряжения и ТКЕ на корпуса большинства таких конденсаторов не наносится.

    Наиболее проста у электролитических конденсаторов. У них емкость обозначается в микрофарадах («мкФ», или «μι»), а напряжение - в вольтах («В», или «V»), Допуск и ТКЕ не наносятся никогда, на некоторых импортных конденсаторах указывают температурный диапазон, в пределах которого гарантируется работоспособность конденсатора (т. е. жидкий электролит не замерзнет и не закипит). На отечественных конденсаторах возле положительного вывода ставят значок «+», у импортных возле отрицательного вывода, параллельно корпусу, рисуют то петую линию, внутри которой через небольшие интервалы нарисованы «-». В спорных случаях правильную можно определить при помощи микроамперметра и батарейки (аккумулятора) на 6…12 В - при «неправильной» полярности через будет протекать ток, в сотни раз больше, чем при «правильной».

    Для лучшего понимания всего вышесказанного на рис. 3.27 собраны примеры маркировки большинства отечественных и импортных конденсаторов.

    1. Что же такое "ТК"?

    "ТК" - это сокращение от "Температурный Коэффициент" . Это свойство радиодеталей изменять свои характеристики в зависимости от температуры. Возникает он оттого, что материалы, из которых делаются радиодетали, при изменении температуры расширяются, сжимаются, и с ними происходят другие странные вещи, о которых физики лучше знают.


    2. Что происходит, когда мы забываем про "ТК"?

    Многие котята не знают или просто забывают про "ТК". А иногда происходит всё гораздо проще, например, нужен конденсатор какой-нибудь ёмкости, а нужного ТКЕ нет или он не известен. Часто торгаши вообще не знают (или не хотят знать, что гораздо вероятнее), чем они торгуют. Вот и приходится впаивать в конструкцию то, что удалось добыть.

    А этот параметр очень важный. Если его не принимать во внимание, то при изменении температуры (просто окружающего воздуха или даже от нагрева аппаратуры во время её работы), характеристики детали с неучтённым ТК могут измениться настолько, что аппаратура станет работать плохо или вообще перестанет работать. Но самое интересное, что как только температура опять станет "нормальной", аппаратура опять начинает работать как ни в чём не бывало. И сколько сил уйдёт на то, что бы отыскать эту "мерцающую неисправность" - а виноват во всём "ТК".


    3. Какие "ТК" бывают и в чём они измеряются.

    Бывают они такие:

    • ТКС - температурный коэффициент сопротивления - у резисторов;
    • ТКЕ - температурный коэффициент ёмкости - конденсаторов;
    • ТКИ - температурный коэффициент индуктивности - катушек индуктивности;
    • ТКН - температурный коэффициент напряжения - стабилитронов (стабилизаторов);
    • ТКЧ - температурный коэффициент частоты - кварцевых (пьезоэлектрических) резонаторов и фильтров;
    • ТКШ - температурный коэффициент шума -есть практически у всех.

    Могут и другие встретиться, но эти главные, практически всегда присутствуют.
    Измеряются они в относительных единицах, которые показывают, насколько и куда изменяется данная характеристика радиодетали при изменении температуры на 1°. Это могут быть проценты на градус (‰/°), промилле на градус (‰/°) или миллионные доли на градус (ppm/°). Для ТКШ это могут быть микровольты или нановольты на градус (мкВ/° или нВ/°).

    Чтобы было совсем ясно:
    • % - процент - это одна сотая (10-2, 0,01 или 1/100) часть какой-то величины;
    • ‰ - промилле - это одна тысячная (10-3, 0,001 или 1/1000) часть какой-то величины;
    • ppm (по-русски: млн-1 ) - это одна миллионная (10-6, 0,000001 или 1/1000000) часть какой-то величины.

    Иногда от температуры характеристики радиодеталей так хитро меняются, что для них специальные графики рисуют или сложные формулы пишут.


    4. А теперь поговорим о "ТК" подробнее:


    ТКС - температурный коэффициент сопротивления


    Резисторы делают из разных материалов. Самые простые из них проволочные. Температурная зависимость сопротивления у них линейная, самый маленький ТКС из них имеют резисторы сделанные из константана (ТКС < 10-5) и манганина (ТКС < 2,5x10-5), поэтому их используют в измерительной технике.

    Очень дешёвые резисторы углеродистые, типа С1-4 или CF. Но ТКС у них довольно большой: от +350 до минус 2500 ppm/°. Поэтому они в основном и применяются в бытовой аппаратуре, которая в комнатных условиях работает.

    Металлизированные и металлоплёночные резисторы, типа С2-23, С2-33 (МЛТ, МТ старые) или MF. ТКС у них средний: от 15 до 500 ppm/°, максимум до 1200 ppm/°. Подходят для большинства применений в широком диапазоне температур.

    Самые дорогие - прецизионные, типа С2-29В или RN. ТКС у них самый маленький: от 5 до 300 ppm/°. Их и применяют в измерительной аппаратуре или в ответственных местах обычной аппаратуры, где важна стабильность сопротивления при изменении температуры, например в RC - фильтрах.

    В отечественных резисторах группа ТКС обозначается буквой, которую, к сожалению, указывают только на заводской упаковке. Конкретные обозначения и величины ТКС можно узнать, заглянув в справочники или в ТУ (технические условия по-нашему или ДатаШиты по-ихнему). Вот только не каждому они доступны.


    Внимание! Сейчас среди импортных резисторов (как правило, неизвестного происхождения) встречается подмена понятия "Допуск номинала" - т.е. точности, с которой изготовлен резистор на заводе. В понятие "Допуск" в этом случае закладывается огромный ТКС. Имеется в виду, что сопротивление данного резистора не выйдет за пределы, к примеру, ±10% при изменении температуры. Этот якобы "Допуск" и обозначается на резисторе. Товарищи, будьте бдительны!

    Существует класс резисторов, где наоборот важен большой ТКС. Это терморезисторы или термисторы и термометры-сопротивления. Терморезисторы или термисторы (иногда встречается "позистор" - терморезистор с положительным ТКС) очень широко применяются в радиоэлектронной аппаратуре в различных целях, например: защита мощных транзисторов, термостабилизация каких-либо частей схемы и т.д. Термометры-сопротивления, как правило, делаются из медной или даже платиновой проволоки и служат для точного измерения температуры в промышленности.


    ТКЕ - температурный коэффициент ёмкости


    ТКЕ конденсатора очень сильно зависит от материала диэлектрика между обкладками. Ведь малейшее температурное изменение толщины диэлектрика, вызывает очень большое изменение ёмкости конденсатора.

    Наиболее подвержены влиянию температуры керамические конденсаторы . Так как полностью победить ТКЕ не удаётся, (а иногда, наоборот, клин клином вышибают: например, в LC-контуре, у катушки ТКИ положительный, тогда конденсатор с отрицательным ТКЕ ставят, чтобы частота настройки контура от температуры не уходила), у керамических конденсаторов очень много всяких ТКЕ имеется. ТКЕ у керамических конденсаторов настолько важен, что его на корпусе конденсатора каким-либо способом практически всегда обозначают.

    Поэтому про них мы поговорим подробнее:

    Отечественная система обозначений ТКЕ (в том числе старая и очень старая)


    Группа ТКЕ

    Номинальное значение ТКЕ

    Буква

    Цветовое обозначение

    Старое цветовое обозначение

    корпус

    метка

    +210 ppm/ °C

    (Синий)

    (Чёрная)

    П100 (П120)

    +100 ppm/ °C (+120 ppm/ °C)

    Красный + фиолетовый

    Синий

    +60 ppm/ °C

    Синий (серый)

    Чёрная (красная)

    +33 ppm/ °C

    Серый

    Серый

    0 ppm/ °C

    Чёрный

    Голубой

    Чёрная

    -33 ppm/ °C

    Коричневый

    Голубой

    Коричневая

    -47 ppm/ °C

    Голубой + красный

    Голубой (голубой)


    (голубая)

    -75 ppm/ °C

    Красный

    Голубой

    Красная

    -150 ppm/ °C

    Оранжевый

    Красный

    Оранжевая

    -220 ppm/ °C

    Жёлтый

    Красный

    Жёлтая

    -330 ppm/ °C

    Зелёный

    Красный

    Зелёная

    -470 ppm/ °C

    Голубой

    Красный

    Синяя

    М750 (М700)

    -750 ppm/ °C (‑700 ppm/ °C)

    Фиолетовый

    Красный

    М1500 (М1300)

    -1500 ppm/ °C (‑1300 ppm/ °C)

    Оранжевый + оранжевый

    Зелёный

    -2200 ppm/ °C

    Жёлтый + оранжевый

    Зелёный

    Жёлтая (серая)

    -3300 ppm/ °C

    Зелёный

    Зелёная

    Оранжевый + чёрный

    Оранжевый

    Чёрная

    Оранжевый + красный

    Оранжевый

    Красная

    Оранжевый + зелёный

    Оранжевый

    Зелёная

    Оранжевый + голубой

    Оранжевый

    Синяя

    Оранжевый + фиолетовый

    Оранжевый

    — (оранжевая)

    Оранжевый + белый

    Оранжевый

    Белый


    Примечание: там, где для цветового обозначения ТКЕ требуется 2 цвета, то одним из них может быть цвет корпуса.

    Группы ТКЕ, обозначенные буквами "П" (плюс) и "М" (минус) имеют линейную зависимость ёмкости от температуры. Группа МП0 самая стойкая - никакое изменение температуры на ёмкость конденсатора не влияет. А вот группы ТКЕ, буквой "Н" (нелинейные) обозначенные, имеют очень хитрую зависимость ёмкости от температуры, поэтому их лучше на картинке посмотреть:



    Картинка эта для примера нарисована, у разных типов конденсаторов эти "Н" и по другому могут кривиться. Главное в том, что ёмкость этих конденсаторов при изменении температуры не изменится больше, чем процентов с буквой "Н" написано.

    Конденсаторы с группами ТКЕ П100 (П120), П33, М47, М75, т.е. с малыми значениями ТКЕ называют ещё термостабильными. Группа ТКЕ МП0 как уже раньше было сказано, самая термостабильная. Конденсаторы с группами ТКЕ М750, М1500 (М1300), т.е с большими отрицательными значениями ТКЕ называют ещё термокомпенсирующими (их и ставят в LC-контура для стабильности).

    У буржуинов своя система обозначений, но она очень на нашу похожа. Вместо буквы "М" у них латинская буква "N", вместо "П" - "P". Группа МП0 у них NP0 или C0G обозначается. А вместо буквы "Н" у них целая куча всяких обозначений: Y5x, X5x, Z5x (x - обозначает какую-то из букв: F, P, S, U, V); X7R. Эти обозначения наиболее часто встречаются, но разные фирмы ещё и "фирменные" обозначения ТКЕ используют. Тут нам только ДатаШиты (справочные листы) фирменные помогут. Чтобы нам попроще было, примерное соответствие наших и буржуинских обозначений такое:

    • вместо Н10 можно ставить X7R;
    • вместо Н20, Н30, Н50, Н70, Н90 можно ставить Y5V или Z5V;
    • вместо П33, МП0, М33 можно ставить NP0 (C0G);
    • вместо П60, П100, М47, М1500 можно ставить X7R, NP0 (C0G).
    Но в каждом случае, конечно, думать надо: "Семь раз отмерь - один раз отрежь" - пословица №1, "Доверяй, но проверяй!" - пословица №2.

    А вот у полипропиленовых конденсаторов (серия К78) ТКЕ довольно большой: минус 500 ppm/ °C.

    Вот тут ещё раз о бдительности: продавцы в кучу К73 и К78 сваливают, мол по размерам примерно одинаковые, да и цвет похож (синий или зелёный обычно). Кстати китайские конденсаторы, которые как аналоги К73-17 продают, чаще всего всё-таки аналогами К78 являются. Конденсаторы-то разные! Кто фильтры или генератор для НЧ делал, тот знает, как частота настройки уплывает от температуры.

    У остальных видов конденсаторов ТКЕ, как правило, не нормируется.
    При ремонте аппаратуры, надо (если есть такая возможность) со схемой сверятся. Обычно, когда ТКЕ важен, он обязательно указан. А если что сам изобретаешь - тут уж хозяин-барин, как сделаешь, так и работать будет.


    ТКИ - температурный коэффициент индуктивности


    От повышения температуры предметы расширяются. Соответственно изменяются размеры катушки. Поэтому у катушек индуктивности положительный ТКИ. Для катушек заводского изготовления он иногда нормируется, а вот с самодельными беда. Если катушка в резонансном контуре стоит, надо правильно ей в пару конденсатор подобрать. Вот тут то нам и пригодятся конденсаторы с разным ТКЕ.


    ТКН - температурный коэффициент напряжения (стабилизации)


    Очень важен, когда мы источник питания для какого-нибудь прибора делаем. Да и просто для аппаратуры, которая длительное время работать должна, да ещё в разных температурных условиях.
    Для примера: стабилитроны Д818 - у них буква в "хвосте" обозначения как раз ТКН указывает.

    ТКЧ - температурный коэффициент частоты


    Кварцевые резонаторы и фильтры также выпускаются с различными ТКЧ. Это хорошо видно, например, на китайских часах (я не говорю о тех, которые от сети питаются - это вообще фатальный случай). Одни почему-то идут довольно точно, а другие, похожие, просто работают по принципу - угадай, который час.

    В измерительных приборах (например, частотомерах) и аппаратуре связи за ТКЧ кварцев очень внимательно следят, иначе частотомер неизвестно что показывать будет, а сигнал передатчика потеряется на просторах мирового эфира. Для этого кварцы в специальный термостат даже помещают.

    ТКЧ для кварцев иногда входит в обозначение их типа, но чаще он указан в их паспорте (или на упаковке), которые, к сожалению, весьма нелегко увидеть. Тогда очень простой совет - чем больше цифр (нулей) после запятой в обозначении частоты кварца на его корпусе (или настройки фильтра), тем ТКЧ лучше и, следовательно, данный кварц стабильнее.


    ТКШ - температурный коэффициент шума


    Все электронные приборы шумят. Шум происходит оттого, что имеются свободные электроны (заряды), которые состоят в Броуновском движении и постоянно митингуют. И, чем выше температура, тем митинг становится всё шумнее. В результате они начинают довольно сильно мешать основному уличному движению (полезным сигналам).

    В результате мы рискуем потерять полезный сигнал и получить вместо него один шум. Вот и принимают меры по борьбе с этим шумом. Например, в маломощных усилительных транзисторах (для антенных усилителей, для входных усилительных каскадов) и в операционных усилителях шум призывают к порядку, т.е. нормируют.

    • Перевод
    • Tutorial

    Вступление: я был озадачен.

    Несколько лет назад, после более чем 25 лет работы с этими вещами, я узнал кое-что новое о керамических конденсаторах. Работая над драйвером светодиодной лампы я обнаружил, что постоянная времени RC-цепочки в моей схеме не сильно смахивает на расчётную.

    Предположив, что на плату были впаяны не те компоненты, я измерил сопротивление двух резисторов составлявших делитель напряжения - они были весьма точны. Тогда был выпаян конденсатор - он так же был великолепен. Просто чтобы убедиться, я взял новые резисторы и конденсатор, измерил их, и впаял обратно. После этого я включил схему, проверил основные показатели, и ожидал увидеть что моя проблема с RC-цепочкой решена… Если бы.

    Я проверял схему в её естественной среде: в корпусе, который в свою очередь сам по себе был зачехлён чтобы имитировать кожух потолочного светильника. Температура компонентов в некоторых местах достигала более чем 100ºC. Для уверенности, и чтобы освежить память я перечитал даташит на используемые конденсаторы. Так началось моё переосмысление керамических конденсаторов.

    Справочная информация об основных типах керамических конденсаторов.

    Для тех кто этого не помнит (как практически все), в таблице 1 указана маркировка основных типов конденсаторов и её значение. Эта таблица описывает конденсаторы второго и третьего класса . Не вдаваясь глубоко в подробности, конденсаторы первого класса обычно сделаны на диэлектрике типа C0G (NP0).

    Таблица 1.

    Нижняя рабочая температура Верхняя рабочая температура Изменение ёмкости в диапазоне (макс.)
    Символ Температура (ºC) Символ Температура (ºC) Символ Изменение (%)
    Z +10 2 +45 A ±1.0
    Y -30 4 +65 B ±1.5
    X -55 5 +85 C ±2.2
    6 +105 D ±3.3
    7 +125 E ±4.7
    8 +150 F ±7.5
    9 +200 P ±10
    R ±15
    S ±22
    T +22, -33
    U +22, -56
    V +22, -82

    Из описанных выше на моём жизненном пути чаще всего мне попадались конденсаторы типа X5R, X7R и Y5V. Я никогда не использовал конденсаторы типа Y5V из-за их экстремально высокой чувствительности к внешним воздействиям.

    Когда производитель конденсаторов разрабатывает новый продукт, он подбирает диэлектрик так, чтобы ёмкость конденсатора изменялась не более определённых пределов в определённом температурном диапазоне. Конденсаторы X7R которые я использую не должны изменять свою ёмкость более чем на ±15% (третий символ) при изменении температуры от -55ºC (первый символ) до +125ºC (второй символ). Так что, либо мне попалась плохая партия, либо что-то ещё происходит в моей схеме.

    Не все X7R созданы одинаковыми.

    Так как изменение постоянной времени моей RC-цепочки было куда больше, чем это могло быть объяснено температурным коэффициентом ёмкости, мне пришлось копать глубже. Глядя на то, насколько уплыла ёмкость моего конденсатора от приложенного к нему напряжения я был очень удивлён. Результат был очень далёк от того номинала, который был впаян. Я брал конденсатор на 16В для работы в цепи 12В. Даташит говорил, что мои 4,7мкФ превращаются в 1,5мкФ в таких условиях. Это объясняло мою проблему.

    Даташит также говорил, что если только увеличить типоразмер с 0805 до 1206, то результирующая ёмкость в тех же условиях будет уже 3,4мкФ! Этот момент требовал более пристального изучения.

    Я нашёл, что сайты Murata® и TDK® имеют классные инструменты для построения графиков изменения ёмкости конденсаторов в зависимости от различных условий. Я прогнал через них керамические конденсаторы на 4,7мкФ для разных типоразмеров и номинальных напряжений. На рисунке 1 показаны графики построенные Murata. Были взяты конденсаторы X5R и X7R типоразмеров от 0603 до 1812 на напряжение от 6,3 до 25В.

    Рисунок 1. Изменение ёмкости в зависимости от приложенного напряжения для выбранных конденсаторов.

    Обратите внимание, что во-первых, при увеличении типоразмера уменьшается изменение ёмкости в зависимости от приложенного напряжения, и наоборот.

    Второй интересный момент состоит в том, что в отличии от типа диэлектрика и типоразмера, номинальное напряжение похоже ни на что не влияет. Я ожидал бы, что конденсатор на 25В под напряжением 12В меньше изменит свою ёмкость, чем конденсатор на 16В под тем же напряжением. Глядя на график для X5R типоразмера 1206 мы видим, что конденсатор на 6,3В на самом деле ведёт себя лучше, чем его родня на большее номинальное напряжение.

    Если взять более широкий ряд конденсаторов, то мы увидим, что это поведение характерно для всех керамических конденсаторов в целом.

    Третье наблюдение состоит в том, что X7R при том же типоразмере имеет меньшую чувствительность к изменениям напряжения, чем X5R. Не знаю, насколько универсально это правило, но в моём случае это так.

    Используя данные графиков, составим таблицу 2 , показывающую насколько уменьшится ёмкость конденсаторов X7R при 12В.

    Таблица 2. Уменьшение ёмкости конденсаторов X7R разных типоразмеров при напряжении 12В.

    Мы видим устойчивое улучшение ситуации по мере роста размера корпуса пока мы не достигнем типоразмера 1210. Дальнейшее увеличение корпуса уже не имеет смысла.

    В моём случае я выбрал наименьший возможный типоразмер компонентов, поскольку этот параметр был критичен для моего проекта. В своём невежестве я полагал что любой конденсатор X7R будет так же хорошо работать, как другой с тем же диэлектриком - и был неправ. Чтобы RC-цепочка заработала правильно я должен был взять конденсатор того же номинала, но в большем корпусе.

    Выбор правильного конденсатора

    Я очень не хотел использовать конденсатор типоразмера 1210. К счастью, я имел возможность увеличить сопротивление резисторов в пять раз, уменьшив при этом ёмкость до 1мкФ. Графики на рисунке 2 показывают поведение различных X7R конденсаторов 1мкФ на 16В в сравнении с их собратьями X7R 4,7мкФ на 16В.

    Рисунок 2. Поведение различных конденсаторов на 1мкФ и 4,7мкФ.

    Конденсатор 0603 1мкФ ведёт себя так же, как 0805 4,7мкФ. Вместе взятые 0805 и 1206 на 1мкФ чувствуют себя лучше, чем 4,7мкФ типоразмера 1210. Используя конденсатор 1мкФ в корпусе 0805 я мог сохранить требования к размерам компонентов, получив при этом в рабочем режиме 85% от исходной ёмкости, а не 30%, как было ранее.

    Но это ещё не всё. Я был изрядно озадачен, ибо считал что все конденсаторы X7R должны иметь сходные коэффициенты изменения ёмкости от напряжения, поскольку все выполены на одном и том же диэлектрике - а именно X7R. Я связался с коллегой - специалистом по керамическим конденсаторам 1 . Он пояснил, что есть много материалов, которые квалифицируются как «X7R». На самом деле, любой материал который позволяет компоненту функционировать в температурном диапазоне от -55ºC до +125ºC с изменением характеристик не более чем на ±15% можно назвать «X7R». Так же он сказал, что нет каких-либо спецификаций на коэффициент изменения ёмкости от напряжения ни для X7R, ни для каких-либо других типов.

    Это очень важный момент, и я его повторю. Производитель может называть конденсатор X7R (или X5R, или еще как-нибудь) до тех пор, пока он соответствует допускам по температурному коэффициенту ёмкости. Вне зависимости от того, насколько плох его коэффициент по напряжению.

    Для инженера-разработчика этот факт только освежает старую шутку - «любой опытный инженер знает: читай даташит!»

    Производители выпускают всё более миниатюрные компоненты, и вынуждены искать компромиссные материалы. Для того чтобы обеспечить необходимые ёмкостно-габаритные показатели, им приходится ухудшать коэффициенты по напряжению. Конечно, более авторитетные производители делают все возможное, чтобы свести к минимуму неблагоприятные последствия этого компромисса.

    А как насчёт типа Y5V, который я сразу отбросил? Для контрольного в голову, давайте рассмотрим обычный конденсатор Y5V. Я не буду выделять какого-то конкретного производителя этих конденсаторов - все примерно одинаковы. Выберем 4,7мкФ на 6,3В в корпусе 0603, и посмотрим его параметры при температуре +85ºC и напряжении 5В. Типовая ёмкость на 92,3% ниже номинала, или 0,33мкФ. Это так. Приложив 5В к этому конденсатору мы получаем падение ёмкости в 14 раз по сравнению с номиналом.

    При температуре +85ºC и напряжении 0В ёмкость уменьшается на 68,14%, с 4,7мкФ до 1,5мкФ. Можно предположить, что приложив 5В мы получим дальнейшее уменьшение ёмкости - от 0,33мкФ до 0,11мкФ. К счастью, эти эффекты не объединяются. Уменьшение ёмкости под напряжением 5В при комнатной температуре куда хуже, чем при +85ºC.

    Для ясности, в данном случае при напряжении 0В ёмкость падает от 4,7мкФ до 1,5мкФ при +85ºC, в то время как при напряжении 5В ёмкость конденсатора увеличивается от 0,33мкФ при комнатной температуре, до 0,39мкФ при +85ºC. Это должно убедить вас действительно тщательно проверять все спецификации тех компонентов, которые вы используете.

    Вывод

    В результате этого урока я уже не просто указываю типы X7R или X5R коллегам или поставщикам. Вместо этого я указываю конкретные партии конкретных поставщиков, которые я сам проверил. Я также предупреждаю клиентов о том, чтобы они перепроверяли спецификации при рассмотрении альтернативных поставщиков для производства, чтобы гарантировать что они не столкнутся с этими проблемами.

    Главный вывод из всей этой истории, как вы наверное догадались, это: «читайте даташиты!». Всегда. Без исключений. Запросите дополнительные данные, если даташит не содержит достаточной информации. Помните, что обозначения керамических конденсаторов X7V, Y5V и т.д. совершенно ничего не говорят о их коэффициентах по напряжению. Инженеры должны перепроверять данные чтобы знать, реально знать о том, как используемые конденсаторы будут вести себя в реальных условиях. В общем, имейте в виду, в нашей безумной гонке за меньшими и меньшими габаритами это становится всё более важным моментом каждый день.

    Об авторе

    Марк Фортунато провёл большую часть жизни пытаясь сделать так, чтобы эти противные электроны оказались в нужное время в нужном месте. Он работал над различными вещами - от систем распознавания речи и микроволновой аппаратуры, до светодиодных ламп (тех, которые регулируются правильно, заметьте!). Он провёл последние 16 лет помогая клиентам приручить их аналоговые схемы. Г-н Фортунато сейчас является ведущим специалистом подразделения коммуникационных и автомобильных решений Maxim Integrated. Когда он не пасёт электроны, Марк любит тренировать молодёжь, читать публицистику, смотреть как его младший сын играет в лакросс, а старший сын играет музыку. В целом, он стремится жить в гармонии. Марк очень сожалеет, что больше не встретится с Джимом Уильямсом или Бобом Пизом.

    Сноски

    1 Автор хотел бы поблагодарить Криса Буркетта, инженера по применению из TDK за его объяснения «что здесь, чёрт возьми, происходит».

    Murata является зарегистрированной торговой маркой компании Murata Manufacturing Co., Ltd.

    TDK является зарегистрированным знаком обслуживания и зарегистрированной торговой маркой корпорации TDK.

    P.S. По просьбам трудящихся - сравнительное фото конденсаторов различных типоразмеров. Шаг сетки 5мм.

    Конденсатор можно сравнить с небольшим аккумулятором, он умеет быстро накапливать и так же быстро ее отдавать. Основной параметр конденсатора – это его емкость (C) . Важным свойством конденсатора, является то, что он оказывает переменному току сопротивление, чем больше частота переменного тока, тем меньше сопротивление. Постоянный ток конденсатор не пропускает.

    Как и , конденсаторы бывают постоянной емкости и переменной емкости. Применение конденсаторы находят в колебательных контурах, различных фильтрах, для разделения цепей постоянного и переменного токов и в качестве блокировочных элементов.

    Основная единица измерения емкости – фарад (Ф) – это очень большая величина, которая на практике не применяется. В электронике используют конденсаторы емкостью от долей пикофарада (пФ) до десятков тысяч микрофарад (мкФ) . 1 мкФ равен одной миллионной доле фарада, а 1 пФ – одной миллионной доле микрофарада.

    Обозначение конденсатора на схеме

    На электрических принципиальных схемах конденсатор отображается в виде двух параллельных линий символизирующих его основные части: две обкладки и диэлектрик между ними. Возле обозначения конденсатора обычно указывают его номинальную емкость, а иногда его номинальное напряжение.

    Номинальное напряжение – значение напряжения указанное на корпусе конденсатора, при котором гарантируется нормальная работа в течение всего срока службы конденсатора. Если напряжение в цепи будет превышать номинальное напряжение конденсатора, то он быстро выйдет из строя, может даже взорваться. Рекомендуется ставить конденсаторы с запасом по напряжению, например: в цепи напряжение 9 вольт – нужно ставить конденсатор с номинальным напряжением 16 вольт или больше.

    Электролитические конденсаторы

    Для работы в диапазоне звуковых частот, а так же для фильтрации выпрямленных напряжений питания, необходимы конденсаторы большой емкости. Называются такие конденсаторы – электролитическими. В отличие от других типов электролитические конденсаторы полярны, это значит, что их можно включать только в цепи постоянного или пульсирующего напряжения и только в той полярности, которая указана на корпусе конденсатора. Не выполнение этого условия приводит к выходу конденсатора из строя, что часто сопровождается взрывом.

    Температурный коэффициент емкости конденсатора (ТКЕ)

    ТКЕ показывает относительное изменение емкости при изменении температуры на один градус. ТКЕ может быть положительным и отрицательным. По значению и знаку этого параметра конденсаторы разделяются на группы, которым присвоены соответствующие буквенные обозначения на корпусе.

    Маркировка конденсаторов

    Емкость от 0 до 9999 пФ может быть указана без обозначения единицы измерения:

    22 = 22p = 22П = 22пФ

    Если емкость меньше 10пФ, то обозначение может быть таким:

    1R5 = 1П5 = 1,5пФ

    Так же конденсаторы маркируют в нанофарадах (нФ) , 1 нанофарад равен 1000пФ и микрофарадах (мкФ) :

    10n = 10Н = 10нФ = 0,01мкФ = 10000пФ

    Н18 = 0,18нФ = 180пФ

    1n0 = 1Н0 = 1нФ = 1000пФ

    330Н = 330n = М33 = m33 = 330нФ = 0,33мкФ = 330000пФ

    100Н = 100n = М10 = m10 = 100нФ = 0,1мкФ = 100000пФ

    1Н5 = 1n5 = 1,5нФ = 1500пФ

    4n7 = 4Н7 = 0,0047мкФ = 4700пФ

    6М8 = 6,8мкФ

    Цифровая маркировка конденсаторов

    Если код трехзначный, то первые две цифры обозначают значение, третья – количество нулей, результат в пикофарадах.

    Например: код 104, к первым двум цифрам приписываем четыре нуля, получаем 100000пФ = 100нФ = 0,1мкФ.

    Если код четырехзначный, то первые три цифры обозначают значение, четвертая – количество нулей, результат тоже в пикофарадах.

    4722 = 47200пФ = 47,2нФ

    Параллельное соединение конденсаторов

    Емкость конденсаторов при параллельном соединении складывается.

    Последовательное соединение конденсаторов

    Общая емкость конденсаторов при последовательном соединении рассчитывается по формуле:

    Если последовательно соединены два конденсатора:

    Если последовательно соединены два одинаковых конденсатора, то общая емкость равна половине емкости одного из них.