Как подключить однофазный электродвигатель через конденсатор: пусковой, рабочий и смешанный варианты включения. Конденсатор для пуска электродвигателя Как узнать пусковой конденсатор или рабочий

В электротехнике часто бывают варианты, когда подключается электрический мотор, собранный для пуска от сети 380 вольт к бытовой сети. Применяются накопители емкости для пуска электрических моторов.

Конденсаторы могут отличаться по виду исполнения и назначению, не каждый накопитель емкости применяется в стартовом пуске электрического мотора в сети 220. По этим причинам надо понимать, как сделать расчет пускового конденсатора, какой вид стартового накопителя надо выбрать, чем они отличаются в работе электрического мотора с сетью 220 вольт. Рассмотрим, что собой представляет емкостной накопитель.

Назначение

Когда ставится вопрос, что такое пусковой конденсатор, рекомендуется рассмотреть принцип работы накопителя емкости, зачем нужны конденсаторы для запуска электродвигателя. В его конструкции применяется свойство проводников − поляризация, когда расположенные близко один от другого проводника заряжаются. Для снятия заряда в конструкции конденсатора применяются пластины, располагаются они напротив друг друга, между ними устанавливается диэлектрик.

Современные производители емкостных накопителей предлагают «condenser» разных модификаций, с разными значениями, для разного применения. Покупателю остается только выбрать накопитель для схемы.

В электрических моторах применяются конденсаторы пусковые для электродвигателей, которые работают от 220 вольт. Пусковой конденсатор нужен, чтобы раскрутить вал электрического двигателя, часто он находится под нагрузкой.

Конденсаторы в своей конструкции имеют особенности, это:

  • в качестве диэлектрика выступает разный материал, в электролитических изделиях марки СВВ – оксидная пленка, которая наносится на один из встроенных электродов;
  • полярные емкости – это небольшие размеры, но способны накапливать большую емкость;
  • неполярный condenser (элемент схемы), обладает большими габаритами, но включается в цепь без учета полярности, характеризуется высокой стоимостью.

В системе пуска электрического мотора в сети на 220 применяется рабочий накопитель емкости и пусковой конденсатор, пусковой накопитель работает только в момент старта электродвигателя, пока ротор не наберет необходимых для работы оборотов. Пусковой элемент в цепи определяет следующие факторы:

  1. Пусковой накопитель электрического заряда приближает электрическое поле в момент старта к круговому полю электромотора;
  2. Дает возможность значительно повысить параметры магнитного потока;
  3. Увеличивает пусковой момент, улучшает работу электродвигателя.

Когда в штатном порядке предусматриваются пуск трехфазного двигателя от бытовой электросети и дальнейшая его эксплуатация, наличие емкости в цепи пуска продлевает длительность эффективного использования мотора, так как часто на валу находится рассчитанная нагрузка. Неполярные конденсаторы имеют большее рабочее напряжение.

Электромотор на 3 фазы в электросети 220в

Есть разные виды старта электромоторов промышленного применения в электросети 220 вольт, но чаще применяются пусковые конденсаторы для старта электродвигателя. Этот способ основывается на включении третьей статорной обмотки в цепь питания через condenser, сдвигающий фазу.

Важно! При использовании электромотора 3-х фазного исполнения в однофазной сети его мощность от номинальных параметров работы в сети 380 вольт понижается до 60%. Кроме этого не каждая марка электродвигателя удовлетворительно работает от 220 вольт – это движки марки МА. Рекомендуется для переключения работы электромоторов с сети 380 на 220 вольт использовать марки электромоторов: АПН, А, УАД и другие движки.

Для пуска двигателя с конденсаторным стартом необходимо, чтобы емкость накопителя могла меняться от оборотов двигателя, что реализовать практически невозможно. По этой причине специалисты рекомендуют управлять электрическим двигателем в две ступени: когда проводится старт электромотора, в работе используются два накопителя емкости, достигнув рабочих оборотов двигателя, пусковой накопитель отключается, остается только рабочий конденсатор.

Как сделать расчет конденсаторов

Правильное применение включения указывается в паспортных данных электромотора. Если там показано, что двигатель может работать от сети питания 380/220в, тогда для 220 надо применить конденсатор для электродвигателя и подключить его по следующей схеме.

Работает схема следующим образом: включая выключатель П1, замыкаем его контакты П1.1, а также П1.2. В этот момент надо сразу нажать на кнопку «Разгон», когда электромотор наберет нужные обороты, ее отпускают. Реверс, или обратное вращение электродвигателя, в этом подключении можно реализовать при помощи переключателя SA1, но после полной остановки двигателя.

Различают подбор накопителя емкости Ср, когда обмотки электромотора соединены по схеме ∆ – треугольник, вычисляется формулой:

Расчет накопителя емкости Ср, когда обмотки электромотора соединены по схеме Y – звезда, вычисляется формулой:

  • накопитель (capacitors) рабочий (Ср), измеряется (мкФ);
  • ток, электромотора (I), измеряется (А);
  • напряжение сети (U), измеряется (В).

Потребляемый ток электромотором вычисляется формулой:

По формуле:

  • мощность двигателя можно посмотреть в паспортных данных или на шильдике, закрепленном на корпусе электромотора (Р), измеряется в ваттах (Вт);
  • КПД (коэффициент полезного действия) – h;
  • коэффициент мощности электромотора – cos j;
  • сетевое напряжение (U), измеряется в вольтах (B).

Обратите внимание! Пусковой конденсатор надо подбирать в два или 2,5 раза выше по емкости накопителя рабочего, так как они рассчитываются не по напряжению сети, а в 1,5 раза выше него. Так для однофазной сети 220 вольт рекомендуется использовать емкостные накопители марки: МБГЧ или МБГО, у которых рабочим напряжением является 500 вольт. Ощутимой разницы, какой из этих конденсаторов выберете, не будет, они оба хорошо себя зарекомендовали.

Для кратковременного применения можно в качестве пусковых конденсаторов применять накопители электролитические, марки К50-3 или КЭ, напряжение рабочее больше 450 вольт.

Необходимо отметить, когда применяются электролитические накопители емкости, их рекомендуют соединять последовательно для надежности и использовать диодный шунт.

(С общ.)=С1+С2/2.

В действительности проще использовать таблицы выбора конденсаторов по мощности электродвигателя.

Важно! Выбирая «capacitors» электромотору, необходимо учесть, что при холостом ходе, накопитель емкости, включенный в обмотку, пропускает электрический ток до 30% выше номинального. Это надо учитывать, исходя из режима эксплуатации электродвигателя. Когда он часто работает без нагрузки или с неполной нагрузкой, емкость (Ср) подбирают с более низким номиналом, а когда происходит перегрузка и остановка двигателя, надо снова произвести пуск.

Переносной блок

На практике часто применяется переносной блок для старта трехфазных электромоторов небольшой мощности в пределах 500 ватт, без условий реверса.

Работа переносного блока происходит следующим образом:

  • нажимая кнопку (SB1), подаем питание на пускатель магнитный (КМ1), переключатель (SA1) в положении «замкнут»;
  • группа контактов магнитного пускателя (КМ1.1 и КМ1.2) подключает в этот момент электромотор (М1) к электрической сети напряжением 220 вольт;
  • одновременно следующая контактная группа магнитного пускателя (КМ3.1) проводит замыкание кнопки (SB1);
  • когда электромотор набрал нужное количество оборотов кнопкой (SA1) отключают стартовый capacitors (С1);
  • электродвигатель останавливается нажатием на кнопку (SB2).

Реализовывается переносной блок и с автоматическим отключением пускового накопителя емкости, для этого надо в схему ввести дополнительное устройство, реле, которое заменит работу тумблера (SA1). Отличия в применении блока и схемы подключения одного двигателя в том, что с блоком легко работать с несколькими двигателями.

Конденсаторный пуск

Необходимо отметить, что и для запуска однофазного двигателя применяется конденсаторный пуск. Отличие этого вида двигателей от трехфазных электромоторов в том, что они не теряют мощности, но так как пусковой момент низкий, нужен пусковой накопитель емкости.

Электродвигатели такого вида имеют в своей конструкции две статорные обмотки, для работы их применяется такая же схема запуска с использованием конденсатора для однофазного двигателя. В этом случае общий накопитель емкости можно рассчитать из простой пропорции. Если не знаете, как подобрать конденсатор, каждые 0,1 киловатта мощности двигателя – 1 микрофарада емкости.

Важно! В данном расчете, упрощенном расчете емкости старта однофазного электродвигателя, полученный результат надо принимать за общую емкость, которая складывается из пусковой и рабочей емкости накопителей.

Специалисты проанализировали много вариантов подключения асинхронных электродвигателей, имеющих штатное питание от сети 380 В и переключаемых в работу от сети 220 В, и сделали следующие выводы:

  1. Когда для двигателя делается подключение к сети 220 вольт, он теряет 50% своей мощности. Рекомендация – для уменьшения потери мощности сделать переключение обмоток со Y на соединение ∆. Такое переключение также понизит мощность, но не на 50%, а на 30% от номинальной мощности электромотора;
  2. Подбирая конденсаторы в основную цепь (рабочий или пусковой), надо учитывать их рабочее напряжение, которое должно быть выше сетевого напряжения в полтора раза, желательно от 400 вольт;
  3. Отличается схема электродвигателя питающегося от 220/127 вольт, обязательно надо включать схему Y «звезда», другой вид подключения ∆ «треугольник» сожжет электромотор;
  4. Когда нет возможности найти пусковой и рабочий конденсатор для работы и старта двигателя, можно собрать цепочку из параллельно соединенных накопителей емкости. В этом случае: С общ.= сумме всех емкостей конденсаторов (С1+С2+С3…);
  5. Если греется мотор в работе, можно занизить параметры рабочего condenser, включенного в обмотку электромотора. В том случае, если движку недостаточно мощи, надо экспериментально поднять параметры рабочего condenser, емкости.

В домашних целях можно использовать трёхфазный электродвигатель, который применяется в промышленности, но учитывайте тот фактор, что будут потери в мощности. Среди любителей переделок популярностью пользуются следующие марки конденсаторов:

  • СВВ-60 – это металлизированный полипропиленовый накопитель емкости, его стоимость – 300 руб.;
  • марка конденсаторов НТС – пленочные, которые стоят немного дешевле, 200 руб.;
  • емкостные накопители Э92 стоимостью до 150 руб.;
  • широко распространено применение металлобумажных накопителей емкости марки МБГО.

Встречаются случаи, когда не требуется пусковой конденсатор. Это возможно при запуске электромотора без нагрузки. Но если электромотор имеет большую мощность 3 квт и больше, конденсатор для старта движка необходим.

Видео

Добрый день, уважаемые читатели блога сайт

В рубрике «Принадлежности» рассмотрим конденсаторы для однофазных . У трехфазных двигателей при подключении к сети питания возникает вращающееся магнитное поле, за счет которого и происходит запуск двигателя. В отличие от трехфазных двигателей, у однофазных в статоре имеется две обмотки рабочая и пусковая. Рабочая обмотка подключена к однофазной сети питания напрямую, а пусковая последовательно с конденсатором. Конденсатор необходим для создания сдвига фаз между токами рабочей и пусковой обмоток. Самый большой вращающий момент в двигателе возникает тогда, когда сдвиг фаз токов обмоток достигает 90°, а их амплитуды создают круговое вращающееся поле. Конденсатор является элементом электрической цепи и предназначен для использования его ёмкости. Он состоит из двух электродов или правильней обкладок, которые разделёны диэлектриком. Конденсаторы имеют возможность накапливать электрическую энергию. В Международной системе единиц СИ за единицу ёмкости принимается ёмкость конденсатора, у которого на один вольт возрастает разность потенциалов при сообщении ему заряда в один кулон (Кл). Емкость конденсаторов измеряется в фарадах (Ф). Емкость в одну фараду очень большая. На практике используются более мелкие единицы измерения микрофарады (мкФ) одна мкФ равняется 10 -6 Ф, пикофарады (пФ) одна пФ равняется 10 -12 мкФ. В однофазных асинхронных двигателях в зависимости от мощности используются конденсаторы емкостью от нескольких до сотен мкФ.

Основные электрические параметры и характеристики

К основным электрическим параметрам относятся: номинальная емкость конденсатора и номинальное рабочее напряжение. Кроме этих параметров существует еще температурный коэффициент емкости (ТКЕ), тангенс угла потерь (tgd), электрическое сопротивление изоляции.

Емкость конденсатора. Свойство конденсатора накапливать и удерживать электрический заряд характеризуется его емкостью. Емкость (С) определяется как отношение накопленного в конденсаторе заряда (q), к разности потенциалов на его электродах или приложенному напряжению (U). Емкость конденсаторов зависит от размеров и формы электродов, их расположения друг относительно друга, а также материала диэлектрика который разделяет электроды. Чем емкость конденсатора больше, тем и накопленный им заряд больше Удельная ёмкость конденсатора – выражает отношение его ёмкости к объёму. Номинальная ёмкость конденсатора – это ёмкость, которую имеет конденсатор согласно нормативной документации. Фактическая же ёмкость каждого отдельного конденсатора отличается от номинальной, но она должна быть в пределах допускаемых отклонений. Значения номинальной ёмкости и ее допустимое отклонение в различных типах конденсаторов постоянной ёмкости установлена стандартом.

Номинальное напряжение – это то значение напряжения обозначенное на конденсаторе, при котором он работает в заданных условиях длительное время и при этом сохраняет свои параметры в допустимых пределах. Значение номинального напряжения зависит от свойств используемых материалов и конструкции конденсаторов. В процессе эксплуатации рабочее напряжение на конденсаторе не должно превышать номинальное. У многих типов конденсаторов при увеличении температуры допустимое номинальное напряжение снижается.

Температурный коэффициент емкости (ТКЕ) – это параметр выражающий линейную зависимостью емкости конденсатора от температуры внешней среды. На практике ТКЕ определятся как относительное изменение емкости при изменении температуры на 1°С. Если эта зависимость нелинейная, тоТКЕконденсатора характеризуется относительным изменением емкости припереходе от нормальной температуры(20±5°С) к допустимомузначению рабочей температуры. Для конденсаторов используемых в однофазных двигателях этот параметр важный и должен быть как можно меньше. Ведь в процессе эксплуатации двигателя его температура повышается, а конденсатор находится непосредственно на двигателе в конденсаторной коробке.

Тангенс угла потерь (tg d ). Потеря накопленной энергии в конденсаторе обусловлена потерями в диэлектрике и его обкладках. Когда через конденсатор протекает переменный ток, то векторы тока и напряжения сдвинуты относительно друг друга на угол (d). Этот угол (d) и называют углом диэлектрических потерь. Если потери отсутствуют, то d=0. Тангенс угла потерь это отношение активной мощности (Pа) к реактивной (Pр) при напряжении синусоидальной формы определённой частоты.

Электрическое сопротивление изоляции электрическое сопротивление постоянному току, определяется как отношение приложенного к конденсатору напряжения (U) , к току утечки (I ут ), или проводимости. Качество применяемого диэлектрика и характеризует сопротивление изоляции. Для конденсатора с большой емкостью сопротивление изоляции обратно пропорционально его площади обкладок, или его ёмкости.

На конденсаторы оказывает очень сильное воздействие влага. Асинхронные электродвигатели используемые в насосном оборудовании перекачивают воду, и высока вероятность попадания влаги на двигатель и в конденсаторную коробку. Воздействие влаги приводит к снижению сопротивления изоляции (возрастает вероятность пробоя), увеличению тангенса угла потерь, коррозии металлических элементов конденсатора.

Кроме всего при эксплуатации двигателя на конденсаторы воздействует различного вида механические нагрузки: вибрация, удары, ускорение и т.д. Как следствие могут появится обрыв выводов, трещины и уменьшение электрической прочности.

Рабочий и пусковой конденсаторы

В качестве рабочих и пусковых используются конденсаторы с оксидным диэлектриком (ранее они назвались электролитическими) Рабочие и пусковые конденсаторы для асинхронных двигателей включаются в сеть переменного тока, и они должны быть неполярными. Они имеют сравнительно большое 450 вольт для оксидных конденсаторов рабочее напряжение, которое в два раза превышает напряжение промышленной сети. На практике применяются конденсаторы с емкостью порядка десятков и сотен микрофарад. Как мы говорили выше, рабочий конденсатор используется для получения вращающего магнитного поля. Пусковая же емкость используется для получения магнитного поля, необходимого для повышения пускового момента электродвигателя. Пусковой конденсатор подключается параллельно рабочему через центробежный выключатель. Когда есть пусковая емкость вращающееся магнитное поле асинхронного двигателя в момент пуска приближается к круговому, а магнитный поток увеличивается. Это повышает пусковой момент и улучшает характеристики двигателя. При достижении асинхронным двигателем оборотов достаточных для отключения центробежного выключателя, пусковая емкость отключается и двигатель остается в работе только с рабочим конденсатором. Схема включения рабочего и пускового конденсаторов приведены на (Рис. 1).

Схема с рабочим и пусковым конденсаторами

В таблице приведены обособленные характеристики рабочих и пусковых конденсаторов для асинхронных двигателей .

РАБОЧИЙ

ПУСКОВОЙ

Назначение Для асинхронных электродвигателей
Схема подключения Последовательно с пусковой обмоткой электродвигателя Параллельно рабочему конденсатору
В качестве Фазосмещающего элемента Фазосмещающего элемента
Для чего Для получения кругового вращающееся магнитного поля, необходимого для работы электродвигателя Для получения магнитного поля, необходимого для повышения пускового момента электродвигателя
Время включения В процессе эксплуатации электродвигателя В момент пуска электродвигателя

Эксплуатация, обслуживание и ремонт

В процессе эксплуатации насосного оборудования с однофазным асинхронным двигателем особое внимание следует обращать на питающее напряжение электрической сети. В случае пониженного напряжения сети, как известно, снижается пусковой момент и частота вращения ротора, из-за увеличения скольжения. При низком напряжении увеличивается также нагрузка на рабочий конденсатор и возрастает время запуска двигателя. В случае значительного провала напряжения питания более 15% высока вероятность того, что асинхронный двигатель не запустится. Очень часто при низком напряжении выходит из строя рабочий конденсатор из-за повышенных токов и перегрева. Он расплавляется и из него вытекает электролит. Для ремонта необходимо приобрести и установить новый конденсатор соответствующей емкости. Очень часто случается, что нужного конденсатора под рукой нет. В этом случае можно подобрать требуемую емкость из двух или даже трех и четырех конденсаторов, подключив их параллельно. Здесь следует обратить внимание на рабочее напряжение, оно должно быть не ниже, чем напряжение на заводском конденсаторе. Общая емкость конденсатора(ов) должна отличаться от номинала не более чем 5%. Если установить емкость большего номинала, то двигатель запустится в работу и будет работать, но при этом начнет греться. Если с помощью клещей измерить номинальный ток двигателя, то ток будет завышен. Так как полное электрическое сопротивление цепи в обмотках двигателя состоит из активного сопротивления цепи и реактивного сопротивления обмоток двигателя и емкости, то с увеличением емкости общее сопротивление возрастает. Сдвиг фаз токов в обмотках из-за увеличения полного сопротивления электрической цепи обмоток после запуска двигателя сильно уменьшится, магнитное поле из синусоидального превратится в эллиптическое, и рабочие характеристики асинхронного двигателя очень сильно ухудшаются, снижается КПД и возрастают тепловые потери.

Иногда бывает, что вместе с конденсатором выходит из строя и пусковая обмотка однофазного двигателя. В такой ситуации стоимость ремонта резко возрастает, ибо надо не только заменить конденсатор, но еще и перемотать статор. Как известно, перемотка статора одна из самых дорогих операций при ремонте двигателя. Очень редко, но бывает и такая ситуация когда при низком напряжении выходит из строя только пусковая обмотка, а конденсатор при этом остается рабочим. Для ремонта двигателя нужно перематывать статор. Все эти ситуации с двигателем случаются при низком напряжении однофазной питающей сети. Для решения этой проблемы в идеальном случае необходим стабилизатор напряжения.

Спасибо за оказанное внимание

К каждому объекту изначально подается трехфазный ток. Основная причина заключается в использовании на электростанциях генераторов с трехфазными обмотками, сдвинутыми по фазе между собой на 120 градусов и вырабатывающими три синусоидальных напряжения. Однако при дальнейшем распределении тока потребителю подводится только одна фаза, к которой и подключается все имеющееся электрооборудование.

Иногда возникает необходимость в использовании нестандартных устройств, поэтому приходится решать задачу, как подобрать конденсатор для трехфазного двигателя. Как правило, требуется рассчитать емкость данного элемента, обеспечивающего устойчивую работу агрегата.

Принцип подключения трехфазного устройства к одной фазе

Во всех квартирах и большинстве частных домов все внутреннее энергоснабжение осуществляется по однофазным сетям. В этих условиях иногда необходимо выполнить . Эта операция вполне возможна с физической точки зрения, поскольку отдельно взятые фазы различаются между собой лишь сдвигом по времени. Подобный сдвиг легко организовать путем включения в цепь любых реактивных элементов - емкостных или индуктивных. Именно они выполняют функцию фазосдвигающих устройств когда используются рабочего и пускового элементов.

Следует учитывать то обстоятельство, что обмотка статора сама по себе обладает индуктивностью. В связи с этим, вполне достаточно снаружи двигателя подключить конденсатор с определенной емкостью. Одновременно, обмотки статора соединяются таким образом, чтобы первая из них сдвигала фазу другой обмотки в одну сторону, а в третьей обмотке конденсатор выполняет эту же процедуру, только в другом направлении. В итоге образуются требуемые фазы в количестве трех, добытые из однофазного питающего провода.

Таким образом, трехфазный двигатель выступает в качестве нагрузки лишь для одной фазы подключенного питания. В результате, в потребляемой энергии образуется дисбаланс, отрицательно влияющий на общую работу сети. Поэтому такой режим рекомендуется использовать в течение непродолжительного времени для электродвигателей небольшой мощности. Подключение обмоток в однофазную сеть может быть выполнено .

Схемы подключения трехфазного двигателя к однофазной сети

Когда трехфазный электродвигатель планируется включать в однофазную сеть, рекомендуется отдавать предпочтение соединению треугольником. Об этом предупреждает информационная табличка, закрепленная на корпусе. В некоторых случаях здесь стоит обозначение «Y», что означает соединение звездой. Рекомендуется переподключить обмотки по схеме треугольника, чтобы избежать больших потерь мощности.

Электродвигатель включается в одну из фаз однофазной сети, а две другие фазы создаются искусственным путем. Для этого используется рабочий (Ср) и пусковой конденсатор (Сп). В самом начале запуска двигателя необходим высокий уровень стартового тока, который не может быть обеспечен одним лишь рабочим конденсатором. На помощь приходит стартовый или пусковой конденсатор, подключаемый параллельно с рабочим конденсатором. При незначительной мощности двигателя их показатели равны между собой. Специально выпускаемые стартовые конденсаторы имеют маркировку «Starting».

Эти устройства работают только в периоды пуска, для того чтобы разогнать двигатель до нужной мощности. В дальнейшем он выключается с помощью кнопочного или двойного выключателя.

Виды пусковых конденсаторов

Небольшие электродвигатели, мощность которых не превышает 200-400 ватт, могут работать без пускового устройства. Для них вполне достаточно одного рабочего конденсатора. Однако при наличии значительных нагрузок на старте, обязательно используются дополнительные пусковые конденсаторы. Он подключается параллельно с рабочим конденсатором и в период разгона удерживается во включенном положении с помощью специальной кнопки или реле.

Для расчета емкости пускового элемента необходимо умножить емкость рабочего конденсатора на коэффициент, равный 2 или 2,5. В процессе разгона двигатель требует емкость все меньше и меньше. В связи с этим, не стоит держать пусковой конденсатор постоянно включенным. Высокая емкость при больших оборотах приведет к перегреву и выходу из строя агрегата.

В стандартную конструкцию конденсатора входят две пластины, расположенные напротив друг друга и разделенные слоем диэлектрика. При выборе того или иного элемента, необходимо учитывать его параметры и технические характеристики.

Все конденсаторы представлены тремя основными видами:

  • Полярные. Не могут работать с электродвигателями, подключенными к переменному току. Разрушающийся слой диэлектрика может привести к нагреву агрегата и последующему короткому замыканию.
  • Неполярные. Получили наибольшее распространение. Могут работать в любых вариантах включения за счет одинакового взаимодействия обкладок с диэлектриком и источником тока.
  • Электролитические. В этом случае электроды представляют собой тонкую оксидную пленку. Они могут достигать максимально возможной емкости до 100 тыс. мкФ, идеально подходят к двигателям с низкой частотой.

Выбор конденсатора для трехфазного двигателя

Конденсаторы, предназначенные для трехфазного мотора, должны иметь достаточно высокую емкость - от десятков до сотен микрофарад. Электролитические конденсаторы не годятся для этих целей, поскольку для них требуется однополярное подключение. То есть, специально для этих устройств потребуется создание выпрямителя с диодами и сопротивлениями.

Постепенно в таких конденсаторах происходит высыхание электролита, что приводит к потере емкости. Кроме того, в процессе эксплуатации данные элементы иногда взрываются. Если все же решено использовать электролитические устройства, нужно обязательно учитывать эти особенности.

Классическим примеров служат элементы, представленные на рисунке. Слева изображен рабочий конденсатор, а справа - пусковой.

Подбор конденсатора для трехфазного двигателя выполняется опытным путем. Емкость рабочего устройства выбирается из расчета 7 мкФ на 100 Вт мощности. Следовательно, 600 Вт будет соответствовать 42 мкФ. Пусковой конденсатор как минимум в 2 раза превышает емкость рабочего. Таким образом 2 х 45 = 90 мкФ будет наиболее подходящим показателем.

Выбор осуществляется постепенно, исходя из работы двигателя, поскольку его реальная мощность напрямую зависит от емкости используемых конденсаторов. Кроме того, это можно сделать по специальной таблице. При недостатке емкости двигатель будет терять свою мощность, а при ее избытке наступит перегрев от чрезмерного тока. Если конденсатор выбран правильно, то двигатель будет работать нормально, без рывков и посторонних шумов. Более точно подбираем устройство путем расчетов, выполняемых по специальным формулам.

Расчет емкости

Емкость конденсатора для электродвигателя рассчитывается исходя из схемы соединения обмоток - звездой или треугольником.

В обоих случаях применяется общая расчетная формула: С раб = к х I ф /U сети, к которой все параметры имеют следующие обозначения:

  • к - является специальным коэффициентом. Его значение составляет 2800 для схемы «звезда» и 4800 для схемы «треугольник».
  • Iф - номинальный ток статора, указанный на информационной табличке. При невозможности прочтения, выполняются измерения с помощью специальных измерительных клещей.
  • Uсети - напряжение питающей сети, величиной в 220 вольт.

Подставив все необходимые значения, можно легко рассчитать, какая емкость будет у рабочего конденсатора (мкФ). Во время расчетов необходимо учитывать ток, поступающий к фазной обмотке статора. Он не должен превышать номинальное значение, точно так же, как нагрузка двигателя с конденсатором должна быть не выше 60-80% номинальной мощности, обозначенной на информационной табличке.

Как подключить пусковой и рабочий конденсаторы

На рисунке указана простейшая схема подключения пускового и рабочего элементов. Первый из них устанавливается сверху, а второй - снизу. Одновременно к двигателю подключается кнопка включения и выключения. Самое главное - внимательно разобраться с проводами, чтобы не перепутать концы.

Данная схема позволяет выполнить предварительную проверку с неточной прикидкой. Она же используется и после окончательного выбора наиболее оптимального значения.

Такой подбор осуществляется экспериментальным путем с использованием нескольких конденсаторов разной емкости. При параллельном подключении их суммарная мощность будет увеличиваться. В это время нужно контролировать работу двигателя. Если работа устойчивая и ровная, в этом случае можно покупать конденсатор с емкостью, равной сумме емкостей проверочных элементов.

добавил комментарий на ютубе:

всё несколько проще. В любом вменяемом учебнике, с названием “Электрические машины”, в конце раздела, посвящённого теории асинхронного двигателя, рассматривается вопрос работы асинхронника в однофазном режиме, с различными схемами подключения обмоток. Там же приводятся формулы расчёта ёмкости рабочих и пусковых конденсаторов. Точный расчёт, довольно сложен – нужно знать специфические параметры двигателя. Упрощённая методика расчёта имеет следующий вид: Звезда Сраб = 2800 (Iном / Uсет); Спуск = Сраб 2÷3 (при тяжёлых условиях запуска, кратность 5); Треугольник Сраб = 4800 (Iном / Uсет); Спуск = Сраб 2÷3 (при тяжёлых условиях запуска, кратность 5); где, Сраб – ёмкость рабочего конденсатора, мкФ; Спуск – ёмкость пускового конденсатора, мкФ; Iном – номинальный фазный ток двигателя при номинальной нагрузке, А; Uсет – напряжение сети, к которой будет подключён двигатель, В. Пример расчета. Исходные данные: имеем асинхронный электродвигатель – 4 кВт; схема соединения обмоток –Δ / Y напряжение U – 220 / 380 В; ток I – 8 / 13,9 А. По токам мотора: 8 А – это фазный ток (т.е. ток каждой из трёх обмоток) двигателя на треугольнике и звезде, и он же линейный ток на звезде; 13,9 А – это линейный ток двигателя на треугольнике (в расчётах нам не понадобится). Ну, и, собственно, сам расчёт: Звезда Сраб = 2800 (Iном / Uсет) = 2800 (8 / 220) = 101,8 мкФ Спуск = Сраб 2÷3 = 101,8 2÷3 = 203,6÷305,4 мкФ (при тяжёлых условиях запуска – 509 мкФ) Треугольник Сраб = 4800 (Iном / Uсет) = 4800 (8 / 220) = 174,5 мкФ Спуск = Сраб 2÷3 = 174,5 2÷3 = 349÷523,5 мкФ (при тяжёлых условиях запуска – 872,5 мкФ) Тип рабочего конденсатора – полипропиленовый (импортный СВВ-60 или отечественный аналог – ДПС). Напряжение кондёра не меньше 400 В по переменке (пример маркировки: АС ~ 450 В), для советских бумажных МБГО рабочая напруга должна быть не меньше 500 В, если меньше – соединять последовательно, но это потеря ёмкости, естественно – так много кондёров набирать придётся). Для пусковых конденсаторов лучше, конечно, тоже использовать полипропиленовые или бумажные, но это будет дорого и громоздко. Для удешевления, можно взять полярные электролитические (это те, у которых на корпусе есть « + » и/или « – »), предварительно сделав из двух полярных электролитов, один неполярный, соединив два конденсатора минусами вместе (можно соединять и плюсами, но у некоторых конденсаторов минус соединён с корпусом этих кондёров и если соединять их плюсами, то придётся эти кондёры изолировать не только от окружающего “железа”, но и друг от друга, а иначе КЗ), а оставшиеся два плюса оставить для подключения к обмоткам мотора (не забываем, что при последовательном соединении двух одинаковых конденсаторов их суммарная ёмкость уменьшается в два раза, а рабочее напряжение в два раза увеличивается – например, соединив последовательно (минус к минусу) два конденсатора 400 В 470 мкФ, получим один неполярный кондёр с рабочим напряжением 800 В и ёмкостью 235 мкФ). Рабочее напряжение каждого из двух последовательно соединённых электролитов, должно быть не меньше 400 В. Нужную пусковую ёмкость набираем (при необходимости) параллельным соединением таких сдвоенных (т.е. уже неполярных) электролитов – при параллельном соединении конденсаторов, рабочее напряжение остаётся неизменным, а ёмкости суммируются (так же, как и при параллельном соединении аккумуляторов). Можно и не изобретать этот “колхоз” со сдвоенными электролитами – есть готовые пусковые неполярные электролиты – например, тип CD-60. Но, в любом случае, с электролитами (и неполярными, и уж тем более с полярными) есть одно НО – такие конденсаторы в сеть 220 В можно включать (полярные лучше вообще не включать) только на время запуска двигателя – использовать электролиты как рабочие конденсаторы нельзя – взорвутся (полярные почти сразу, неполярные чуть позже). С рабочим конденсатором на треугольнике двигатель теряет 25-30 % свой трёхфазной мощности, на звезде 45-50 %. Без рабочего конденсатора, в зависимости от схемы соединения обмоток, потеря мощности составит более 60 %. И ещё один момент по кондёрам: в youtube немало видео, где народ подбирает рабочие конденсаторы по звуку мотора на холостом ходу (без нагрузки) и пугаясь повышенного гудения двигателя, уменьшает ёмкость рабочих конденсаторов до тех пор, пока это гул не снизится до более-менее приемлемого. Это неправильный подбор рабочего кондёра – так занижается мощность двигателя под нагрузкой. Да, повышенное гудение мотора это не очень хорошо, но не слишком опасно для обмоток, если ёмкость рабочего конденсатора не завышена. Дело в том, что в идеале, ёмкость рабочего конденсатора должна плавно меняться, в зависимости от нагрузки двигателя – чем больше нагрузка, тем больше должна быть ёмкость. Но сделать такую плавную регулировку ёмкости довольно сложно, это и дорого, и громоздко. Поэтому подбирают такую ёмкость, которая будет соответствовать какой-то конкретной нагрузке мотора – как правило, номинальной. При соответствии ёмкости рабочего конденсатора расчётной нагрузке двигателя, магнитное поле статора круговое и гудение минимально. Но когда ёмкость рабочего конденсатора превышает нагрузку мотора, магнитное поле статора становится эллиптическим, пульсирующим, неравномерным, и вот это пульсирующее магнитное поле и вызывает гудение, из-за неравномерного вращения ротора – ротор, вращаясь в одном направлении, попутно дёргается то вперёд, то назад, и при повышенных токах в обмотках, двигатель развивает меньшую мощность. Поэтому если мотор гудит на средних нагрузках и на холостом ходу, то это не так страшно, а вот если гудение наблюдается при полной нагрузке, то это говорит о явно завышенной ёмкости рабочего кондёра. В этом случае, уменьшение ёмкости позволит снизить токи в обмотках двигателя и его нагрев, выровнять (“скруглить”) магнитное поле статора (т.е. уменьшить гудение) и повысить развиваемую мотором мощность. Но оставлять мотор в работе на холостом ходу длительное время с рабочим кондёром, рассчитанным на полную мощность двигателя, всё же не стоит – в этом случае на рабочем конденсаторе будет повышенное напряжение (до 350 В), а по обмотке, подключенной последовательно с рабочим конденсатором, будет протекать повышенный ток (на 30 % больше номинального – на треугольнике, и на 15 % - на звезде). При увеличении нагрузки на мотор, напряжение на рабочем кондёре и ток в последовательно соединённой с рабочим кондёром обмотке двигателя будут снижаться.

Двигатели, которые называют однофазными, имеют на статоре, как правило, две обмотки. Одна из них называется главной или рабочей, другая - вспомогательной или пусковой. Необходимость иметь две пространственно сдвинутые обмотки, пи-таемые сдвинутыми на 90 электрических градусов токами для получения пускового момента.

Двигатели называют однофазными, поскольку они изначально предназначены для питания от однофазной переменного тока.

Сдвиг токов во времени обеспечивают включением во вспомогательную фазу фазосдвигающего элемента - резистора или электрического конденсатора .

В двигателях с пусковым резистором (часто пусковая фаза выполняется с повышенным сопротивлением) магнитное поле эллиптическое; в двигателях с пусковым электрическим конденсатором поле ближе к круговому. Вспомогательная обмотка после разгона двигателя отключается и двигатель работает как однофазный однообмоточный. Его результирующее поле резко эллиптическое. По этой причине однофазные двигатели имеют низкие энергетические показатели и малую перегрузочную способность.
В двигателях с постоянно включенным конденсатором емкость последнего выбирается, как правило, из условий обес¬печения кругового поля в номинальном режиме. При этом магнитное поле при пуске далеко от кругового и пусковой момент поэтому невелик. Для улучшения пусковых свойств параллельно рабочему конденсатору на пуска подключается пусковой элетрический конденсатор.

В электроприводах с легкими условиями пуска часто применяются однофазные АД с экранированными полюсами. В таких двигателях роль вспомогательной фазы играют разме¬щаемые на явновыраженных полюсах статора короткозамкну- тые витки. Поскольку пространственный угол между осями главной фазы (обмотки возбуждения) и витка много меньше 90°, поле в таком двигателе резко эллиптическое. Поэтому пусковые и рабочие свойства двигателей с экранированными полюсами невысоки.

Используются однофазные асинхронные двигатели с короткозамкнутым ротором: с повышенным сопротивлением пус-ковой фазы, с пусковым конденсатором, с рабочим конденса¬тором, с тем и другим, а также двигатели с экранированными полюсами.

Основные технические данные однофазных АД на напряжение 220 В: к, - кратность пускового тока; кп - кратность пускового момента; км - кратность максимального момента или перегрузочная способность двигателя.

Основные параметры электрических конденсаторов

Конденсатор является обладающим электрической емкостью концентратором энергии электрического поля и состоит из разделенных диэлектриком проводящих электродов - обкладок с выводами для присоединения к электрической цепи.

Емкость конденсатора есть отношение величины заряда конденсатора к разности потенциалов на его обкладках, кото¬рую сообщают конденсатору:
За еДиницу емкости в международной системе СИ принимают фараду (Ф) - емкость такого конденсатора, у кото¬рого потенциал возрастает на один вольт (В) при сообщении ему заряда в один кулон (Кл). Это очень большая величина, поэтому для практических целей используют более мелкие еди¬ницы емкости: микрофараду (мкФ), нанофараду (нф) и пикофа- раду (пФ):

1 ф = 106 мкФ = 109 нФ = 1012 пФ.

Емкость конденсатора зависит от площади обкладки конденсатора S, толщины слоя разделяющего их диэлектрика d и электрических свойств диэлектрика, характеризуемых диэлектрической проницаемостью е:

Номинальной называют емкость конденсатора, обозначен¬ную на его корпусе. Номинальные значения емкости стандартизованы.

МЭК (Публикация № 63) установлено семь предпочтительных рядов для значений номинальной емкости: ЕЗ; Е6; Е12; Е24; Е48; Е96; Е192. Цифры после буквы Е указывают на число номинальных значений в каждом десятичном интервале (дека¬де), которые соответствуют числам 1,0; 1,5; 2,2; 3,3; 4,7; 6,8 или числам, полученным путем умножения или деления на 10″, где п - целое положительное или отрицательное число. В условном обозначении номинальная емкость выражена в микрофа¬радах (мкФ) или в пикофарадах (пФ).

Для обозначения номинальных емкостей применяется система кодирования. Она состоит из трех или четырех знаков, включающих две или три цифры и букву. Буква кода из русского или латинского алфавитов обозначает множитель, состав¬ляющий значение емкости, и определяет положение запятой. Буквы П(р), Н(п), М(м), И(1), Ф(Р) обозначают множители 10~12, Ю-9, 10~6, Ю-3 и 1 соответственно для значений емкости, выра¬женной в фарадах.

Например, емкость 2,2 пФ обозначается 2П2 (2р2); 1500 пФ - 1Н5 (1п5); 0,1 мкФ - М1 (м1); 10 мкФ - ЮМ (Юм); 1 фара¬да — 1Ф0 (1F0).

Фактическое значение емкости может отличаться от номи-нального на величину допускаемого отклонения в процентах. Допускаемые отклонения изменяются в зависимости от типа и точности конденсатора в весьма широких пределах от ±0,1 до +80%.
Номинальным называют напряжение, указанное на конденсаторе или в документации на него, при котором он может работать в заданных условиях в течение срока службы с сохранением параметров в допустимых пределах. Номинальное напряжение зависит от конструкции конденсатора и свойств применяемых материалов. При эксплуатации напряжение на конденсаторе не должно превышать номинальное. Для многих типов конденсаторов с увеличением температуры (обычно 70…85 °С) допустимое напряжение снижается. Номинальные напряжения конденсаторов устанавливаются в соответствии с рядом (ГОСТ 9665-77): 1; 1,6; 2,5; 3,2; 4; 6,3; 10; 16; 20; 25; 32; 40; 50; 63; 80; 100; 125; 160; 200; 250; 315; 350; 400; 450; 500; 630; 800; 1000; 1600; 2000; 2500; 3000; 4000; 5000; 6300; 8000; 10000 В.

Температурный коэффициент емкости (ТКЕ) определя¬ет относительное изменение емкости (в миллионных долях) от температуры при изменении ее на 1 °С.

Тангенс угла потерь (tg8) характеризует потери электри-ческой энергии в конденсаторе. Значения тангенса угла потерь у полистирольных и фторопластовых конденсаторов находятся в пределах (Ю…15)10~4, поликарбонатных (15…25)Ю~4, оксид¬ных 5…35%, полиэтилентерефталатных 0,01…0,012. Величина, обратная тангенсу угла потерь, называется добротностью кон-денсатора.

Сопротивление изоляции и ток утечки. Эти параметры характеризуют качество диэлектрика и используются при рас¬четах высокоомных, времязадающих и слаботочных цепей. Наиболее высокое сопротивление изоляции у фторопластовых, по- листирольных и полипропиленовых конденсаторов, несколько ниже у высокочастотных керамических, поликарбонатных и лавсановых конденсаторов.

Для маркировки конденсаторов постоянной емкости применяют букву К (конденсатор постоянной емкости) и цифры, определяющие вид диэлектрика.