Тригонометрия – это просто и понятно. Тригонометрия Как легко понять тригонометрию

Еще в 1905 г. русские читатели могли прочесть в книге Уильяма Джеймса “Психология” его рассуждения о том, “почему зубрение представляет такой дурной способ учения?”

“Знания, приобретенные путем простого зубрения, почти неизбежно забываются совершенно бесследно. Наоборот, умственный материал, набираемый памятью постепенно, день за днем, в связи с различными контекстами, связанный ассоциативно с другими внешними событиями и неоднократно подвергший обсуждению, образует такую систему, вступает в такую связь с остальными сторонами нашего интеллекта, легко возобновляется в памяти массою внешних поводов, что остается надолго прочным приобретением”.

С тех пор прошло более 100 лет, а слова эти поразительно остаются злободневными. В этом каждодневно убеждаешься, занимаясь со школьниками. Массовые пробелы в знаниях настолько велики, что можно утверждать: школьный курс математики в дидактическом и психологическом отношениях – не система, а некое устройство, поощряющее кратковременную память и нисколько не заботиться о памяти долговременной.

Знать школьный курс математики – значит владеть материалом каждого из направлений математики, быть в состоянии актуализировать любое из них в любое время. Чтобы достичь этого, нужно систематически обращаться каждому из них, что порой не всегда возможно из-за сильной загруженности на уроке.

Есть другой путь долговременного запоминания фактов и формул – это опорные сигналы.

Тригонометрия – один из больших разделов школьной математики, изучаемой в курсе геометрии 8, 9 классов и в курсе алгебры 9 класса, алгебры и начал анализа в 10 классе.

Самый большой объем изучаемого материала по тригонометрии приходится на долю 10 класса. Большую часть этого материала из тригонометрии можно изучить и запомнить на тригонометрическом круге (окружность единичного радиуса с центром в начале прямоугольной системы координат). Приложение1.ppt

Это следующие понятия тригонометрии:

  • определения синуса, косинуса, тангенса и котангенса угла;
  • радианное измерение углов;
  • область определения и область значений тригонометрических функций
  • значения тригонометрических функций для некоторых значений числового и углового аргумента;
  • периодичность тригонометрических функций;
  • четность и нечетность тригонометрических функций;
  • возрастание и убывание тригонометрических функций;
  • формулы приведения;
  • значения обратных тригонометрических функций;
  • решение простейших тригонометрических уравнений;
  • решение простейших неравенств;
  • основные формулы тригонометрии.

Рассмотрим изучение этих понятий на тригонометрическом круге.

1) Определение синуса, косинуса, тангенса и котангенса.

После введения понятия тригонометрического круга (окружность единичного радиуса с центром в начале координат), начального радиуса (радиус окружности по направлению оси Ох), угла поворота, учащиеся самостоятельно получают определения для синуса, косинуса, тангенса и котангенса на тригонометрическом круге, используя определения из курса геометрии, то есть, рассматривая прямоугольный треугольник с гипотенузой, равной 1.

Косинусом угла называется абсцисса точки на окружности при повороте начального радиуса на данный угол.

Синусом угла называется ордината точки на окружности при повороте начального радиуса на данный угол.

2) Радианное измерение углов на тригонометрическом круге.

После введения радианной меры угла (1 радиан – это центральный угол, которому соответствует длина дуги, равная длине радиуса окружности), учащиеся делают вывод, что радианное измерение угла – это числовое значение угла поворота на окружности, равное длине соответствующей дуги при повороте начального радиуса на заданный угол. .

Тригонометрический круг разделен на 12 равных частей диаметрами окружности. Зная, что угол радианам, можно определить радианное измерение для углов кратных .

А радианные измерения углов, кратных, получаются аналогично:

3) Область определения и область значений тригонометрических функций.

Будет ли соответствие углов поворота и значений координат точки на окружности функцией?

Каждому углу поворота соответствует единственная точка на окружности, значит данное соответствие – функция.

Получаем функции

На тригонометрическом круге видно, что область определения функций – множество всех действительных чисел, а область значений - .

Введем понятия линий тангенсов и котангенсов на тригонометрическом круге.

1) Пусть Введем вспомогательную прямую, параллельную оси Оу, на которой определяются тангенсы для любого числового аргумента.

2) Аналогично получаем линию котангенсов. Пусть у=1, тогда . Значит, значения котангенса определяются на прямой, параллельной оси Ох.

На тригонометрическом круге без труда можно определить область определения и область значений тригонометрических функций:

для тангенса -

для котангенса -

4) Значения тригонометрических функций на тригонометрическом круге.

Катет, противолежащий углу в равен половине гипотенузы, то есть Другой катет по теореме Пифагора:

Значит по определению синуса, косинуса, тангенса, котангенса можно определить значения для углов кратных или радианам. Значения синуса определяются по оси Оу, косинуса по оси Ох, а значения тангенса и котангенса можно определить по дополнительным осям, параллельным осям Оу и Ох соответственно.

Табличные значения синуса и косинуса расположены на соответствующих осях следующим образом:

Табличные значения тангенса и котангенса -

5) Периодичность тригонометрических функций.

На тригонометрическом круге видно, что значения синуса, косинуса повторяются через каждые радиана, а тангенса и котангенса – через радиан.

6)Четность и нечетность тригонометрических функций.

Это свойство можно получить, сравнивая значения положительных и им противоположных углов поворота тригонометрических функций. Получаем, что

Значит, косинус – четная функция, все остальные функции – нечетные.

7) Возрастание и убывание тригонометрических функций.

По тригонометрическому кругу видно, что функция синус возрастает и убывает

Аналогично рассуждая, получаем промежутки возрастания и убывания функций косинуса, тангенса и котангенса.

8) Формулы приведения.

За угол берем меньшее значение угла на тригонометрическом круге. Все формулы получаются в сравнении значений тригонометрических функций на катетах выделенных прямоугольных треугольников.

Алгоритм применения формул приведения:

1) Определить знак функции при повороте на заданный угол.

При повороте на угол функция сохраняется, при повороте на угол - целое, нечетное число, получается кофункция (

9) Значения обратных тригонометрических функций.

Введем обратные функции для тригонометрических функций, пользуясь определением функции.

Каждому значению синуса, косинуса, тангенса и котангенса на тригонометрическом круге соответствует только одно значение угла поворота. Значит, для функции область определения , область значений - Для функции область определения - , область значений - . Аналогично получаем область определения и область значений обратных функций для косинуса и котангенса.

Алгоритм нахождения значений обратных тригонометрических функций:

1) нахождение на соответствующей оси значения аргумента обратной тригонометрической функции;

2) нахождение угла поворота начального радиуса с учетом области значений обратной тригонометрической функции.

Например:

10) Решение простейших уравнений на тригонометрическом круге.

Чтобы решить уравнение вида , найдем точки на окружности, ординаты которых равны и запишем соответствующие углы с учетом периода функции.

Для уравнения , найдем точки на окружности, абсциссы которых равны и запишем соответствующие углы с учетом периода функции.

Аналогично для уравнений вида Значения определяются на линиях тангенсов и котангенсов и записываются соответствующие углы поворота.

Все понятия и формулы тригонометрии получают сами ученики под четким руководством учителя с помощью тригонометрического круга. В дальнейшем этот “круг” будет служить для них опорным сигналом или внешним фактором для воспроизведения в памяти понятий и формул тригонометрии.

Изучение тригонометрии на тригонометрическом круге способствует:

  • выбору оптимального для данного урока стиль общения, организации учебного сотрудничества;
  • целевые ориентиры урока становятся личностно значимыми для каждого ученика;
  • новой материал опирается на личный опыт действия, мышления, ощущения учащегося;
  • урок включает в себя различные формы работы и способы получения и усвоения знаний; присутствуют элементы взаимо- и самообучения; само- и взаимоконтроля;
  • имеет место быстрое реагирование на непонимание и ошибку (совместное обсуждение, опоры-подсказки, взаимоконсультации).

На этом уроке мы поговорим, как возникает необходимость во введении тригонометрических функций и почему их изучают, что нужно понимать в этой теме, а где просто необходимо набить руку (что является техникой). Заметим, что техника и понимание - это разные вещи. Согласитесь, есть разница: научиться кататься на велосипеде, то есть понимать, как это делать, или стать профессиональным велогонщиком. Мы будем говорить именно о понимании, о том, зачем нужны тригонометрические функции.

Существует четыре тригонометрические функции, но их все можно выразить через одну используя тождества (равенства, которые их связывают).

Формальные определения тригонометрических функций для острых углов в прямоугольных треугольниках (Рис. 1).

Синусом острого угла прямоугольного треугольника называют отношение противолежащего катета к гипотенузе.

Косинусом острого угла прямоугольного треугольника называют отношение прилежащего катета к гипотенузе.

Тангенсом острого угла прямоугольного треугольника называют отношение противоположного катета к прилежащему катету.

Котангенсом острого угла прямоугольного треугольника называют отношение прилежащего катета к противолежащему катету.

Рис. 1. Определение тригонометрических функций острого угла прямоугольного треугольника

Эти определения являются формальными. Правильнее сказать, что существует только одна функция, например, синус. Если бы они не были так нужны (не так часто использовались) в технике, не вводили бы и столько разных тригонометрических функций.

Например, косинус угла равен синусу этого же угла с добавлением (). Кроме того, косинус угла всегда можно выразить через синус этого же угла с точностью до знака, используя основное тригонометрическое тождество (). Тангенс угла - это отношение синуса к косинусу или перевёрнутый котангенс (Рис. 2). Некоторые не используют котангенс вообще, заменяя его на . Поэтому важно понимать и уметь работать с одной тригонометрической функцией.

Рис. 2. Связь различных тригонометрических функций

Но зачем вообще понадобились такие функции? Для решения каких практических задач их используют? Давайте рассмотрим несколько примеров.

Два человека (А и В ) выталкивают машину из лужи (Рис. 3). Человек В может толкать машину вбок, при этом он вряд ли поможет А . С другой стороны, направление его усилий может постепенно сдвигаться (Рис. 4).

Рис. 3. В толкает машину вбок

Рис. 4. В начинает менять направление своих усилий

Ясно, что наиболее эффективно их усилия сложатся тогда, когда они будут толкать машину в одну сторону (Рис. 5).

Рис. 5. Наиболее эффективное совместное направление усилий

То, насколько В помогает выталкиванию машины, насколько направление его силы близко к направлению силы, с которой действует А , является функцией угла и выражается через его косинус (Рис. 6).

Рис. 6. Косинус, как характеристика эффективности усилий В

Если умножить величину силы, с которой действует В , на косинус угла, получим проекцию его силы на направление силы, с которой действует А . Чем ближе угол между направлениями сил к , тем эффективнее будет результат совместных действий А и В (Рис. 7). Если они будут толкать машину с одинаковой силой в противоположных направлениях, то машина останется на месте (Рис. 8).

Рис. 7. Эффективность совместных усилий А и В

Рис. 8. Противоположное направление действия сил А и В

Важно понимать, почему мы можем заменить угол (его вклад в конечный результат) на косинус (или другую тригонометрическую функцию угла). На самом деле это следует из такого свойства подобных треугольников. Так как фактически мы говорим следующее: угол можно заменить на отношение двух чисел (катет-гипотенуза или катет-катет). Это было бы невозможно, если бы, например, для одного и того же угла разных прямоугольных треугольников эти отношения были бы разные (Рис. 9).

Рис. 9. Равные отношения сторон в подобных треугольниках

Например, если бы отношение и отношение было бы разным, то мы бы не смогли ввести функцию тангенса, так как для одного и того же угла в разных прямоугольных треугольниках тангенс оказался бы разным. Но благодаря тому, что отношения длин катетов подобных прямоугольных треугольников одинаковы, значение функции не будет зависеть от треугольника, а значит, острый угол и значения его тригонометрических функций взаимно однозначны.

Предположим, мы знаем высоту некоего дерева (Рис. 10). Как измерить высоту здания, расположенного рядом?

Рис. 10. Иллюстрация условия примера 2

Находим точку , такую, что линия, проведённая через эту точку и вершину дома, пройдёт через вершину дерева (Рис. 11).

Рис. 11. Иллюстрация решения задачи примера 2

Мы можем измерить расстояние от этой точки до дерева, расстояние от неё до дома и знаем высоту дерева. Из пропорции можно найти высоту дома: .

Пропорция - это равенство отношения двух чисел. В данном случае равенство отношения длин катетов подобных прямоугольных треугольников. Причём эти отношения равны некоторой мере угла, которая выражается через тригонометрическую функцию (по определению, это тангенс). Получаем, что для каждого острого угла значение его тригонометрической функции однозначно. То есть синус, косинус, тангенс, котангенс - это действительно функции, так как каждому острому углу соответствует ровно одно значение каждой из них. Следовательно, их можно дальше исследовать и пользоваться их свойствами. Значения тригонометрических функций для всех углов уже вычислены, ими можно пользоваться (их можно узнать из таблиц Брадиса или с помощью любого инженерного калькулятора). А вот решить обратную задачу (например, по значению синуса восстановить меру угла, который ему соответствует) мы можем не всегда.

Пусть синус некоторого угла равен или приблизительно (Рис. 12). Какой угол будет соответствовать данному значению синуса? Конечно, мы может опять воспользоваться таблицей Брадиса и найти какое-то значение, но оказывается, что оно не будет единственным (Рис. 13).

Рис. 12. Нахождение угла по значению его синуса

Рис. 13. Многозначность обратных тригонометрических функций

Следовательно, при восстановлении по значению тригонометрической функции угла, возникает многозначность обратных тригонометрических функций. Это может показаться сложным, но на самом деле мы сталкиваемся с похожими ситуациями каждый день.

Если зашторить окна и не знать, светло или темно на улице, или же оказаться в пещере, то, проснувшись, трудно сказать, сейчас час дня, ночи или же следующего дня (Рис. 14). На самом деле, если спросить у нас «Который час?», мы должны честно ответить: «Час плюс умножить на , где »

Рис. 14. Иллюстрация многозначности на примере с часами

Можно сделать вывод, что - это период (промежуток, через который часы будут показывать то же время, что и сейчас). Периоды есть и у тригонометрических функций: синуса, косинуса и т.д. То есть их значения через некоторое изменение аргумента повторяются.

Если бы на планете не было смены дня и ночи или смены сезонов, то мы не могли бы пользоваться периодическим временем. Ведь у нас только нумерация лет идёт по возрастающей, а в сутках часа, и каждые новые сутки счёт начинается заново. С месяцами та же ситуация: если сейчас январь, то через месяцев опять наступит январь и т.д. Использовать периодический счёт времени ( часа, месяцев) нам помогают внешние ориентиры - например, вращение Земли вокруг своей оси и изменение положения Солнца и Луны на небе. Если бы Солнце всегда висело в одном и том же положении, то для подсчёта времени нам бы считать количество секунд (минут) с момента возникновения этого самого подсчёта. Дата и время могли бы тогда звучать так: миллиард секунд.

Вывод: никаких сложностей в плане многозначности обратных функций нет. Действительно могут быть варианты, когда для одного и того же синуса существуют разные значения угла (Рис. 15).

Рис. 15. Восстановление угла по значению его синуса

Обычно при решении практических задач мы всегда работаем в стандартном диапазоне от до . В этом диапазоне для каждого значения тригонометрической функции есть всего два соответствующих значения меры угла.

Рассмотрим движущуюся ленту и маятник в виде ведра с отверстием, из которого высыпается песок. Маятник качается, лента движется (Рис. 16). В результате песок оставит след в виде графика функции синус (или косинус), который называют синусоида.

На самом деле графики синуса и косинуса отличаются друг от друга только точкой отсчёта (если нарисовать один из них, а затем стереть оси координат, то определить, какой именно график был нарисован, не получится). Поэтому называть график косинусоида нет смысла (зачем придумывать отдельное название для того же самого графика)?

Рис. 16. Иллюстрация постановки задачи в примере 4

По графику функции также можно понять, почему обратные функции будут иметь много значений. Если значение синуса зафиксировать, т.е. провести прямую параллельно оси абсцисс, то на пересечении получим все точки, в которых синус угла равен данному. Понятно, что таких точек будет бесконечно много. Как в примере с часами, где было значение времени отличалось на , только здесь значение угла будет отличаться на величину (Рис. 17).

Рис. 17. Иллюстрация многозначности для синуса

Если рассмотреть пример с часами, то точка (конец часовой стрелки) двигается по окружности. Точно так же можно определить и тригонометрические функции - рассматривать не углы в прямоугольном треугольнике, а угол между радиусом окружности и положительным направлением оси . Количество кругов, который пройдёт точка (договорились считать движение по часовой стрелке со знаком минус, а против - со знаком плюс), это период (Рис. 18).

Рис. 18. Значение синуса на окружности

Итак, обратная функция однозначно определена на некотором интервале. Для этого интервала мы можем посчитать её значения, а все остальные получить из найденных значений, добавляя и вычитая период функции.

Рассмотрим ещё один пример периода. Машина движется по дороге. Представим, что её колесо въехало в краску или в лужу. Можно увидеть периодические отметины от краски или лужи на дороге (Рис. 19).

Рис. 19. Иллюстрация периода

Тригонометрических формул в школьном курсе достаточно много, но по большому счёту достаточно помнить всего одну (Рис. 20).

Рис. 20. Тригонометрические формулы

Формулу двойного угла так же легко вывести из синуса суммы, подставив (аналогично для косинуса). Также можно вывести формулы произведения.

На самом деле помнить нужно очень мало, так как с решением задач эти формулы сами запомнятся. Конечно, кто-то много решать поленится, но ему тогда эта техника, а значит, и сами формулы, нужны и не будут.

А раз формулы не понадобятся, то не нужно их и запоминать. Нужно просто понимать идею, что тригонометрические функции - это функции, при помощи которых рассчитываются, например, мосты. Без их использования и расчёта не обходится практически ни один механизм.

1. Часто возникает вопрос, могут ли провода быть абсолютно параллельны земле. Ответ: нет, не могут, так как одна сила действует вниз, а другие параллельно - они никогда не уравновесятся (Рис. 21).

2. Лебедь, рак и щука тянут воз в одной плоскости. Лебедь летит в одну сторону, рак тянет в другую, а щука - в третью (Рис. 22). Их силы могут уравновешиваться. Посчитать это уравновешивание можно как раз с помощью тригонометрических функций.

3. Вантовый мост (Рис. 23). Тригонометрические функции помогают посчитать количество вантов, как они должны быть направлены и натянуты.

Рис. 23. Вантовый мост

Рис. 24. «Струнный мост»

Рис. 25. Большой Обуховский мост

Ссыл-ки на ма-те-ри-а-лы сайта InternetUrok

Математика 6 класс:

Геометрия 8 класс:

Видеокурс «Получи пятерку» включает все темы, необходимые для успешной сдачи ЕГЭ по математике на 60-65 баллов. Полностью все задачи 1-13 Профильного ЕГЭ по математике. Подходит также для сдачи Базового ЕГЭ по математике. Если вы хотите сдать ЕГЭ на 90-100 баллов, вам надо решать часть 1 за 30 минут и без ошибок!

Курс подготовки к ЕГЭ для 10-11 класса, а также для преподавателей. Все необходимое, чтобы решить часть 1 ЕГЭ по математике (первые 12 задач) и задачу 13 (тригонометрия). А это более 70 баллов на ЕГЭ, и без них не обойтись ни стобалльнику, ни гуманитарию.

Вся необходимая теория. Быстрые способы решения, ловушки и секреты ЕГЭ. Разобраны все актуальные задания части 1 из Банка заданий ФИПИ. Курс полностью соответствует требованиям ЕГЭ-2018.

Курс содержит 5 больших тем, по 2,5 часа каждая. Каждая тема дается с нуля, просто и понятно.

Сотни заданий ЕГЭ. Текстовые задачи и теория вероятностей. Простые и легко запоминаемые алгоритмы решения задач. Геометрия. Теория, справочный материал, разбор всех типов заданий ЕГЭ. Стереометрия. Хитрые приемы решения, полезные шпаргалки, развитие пространственного воображения. Тригонометрия с нуля - до задачи 13. Понимание вместо зубрежки. Наглядное объяснение сложных понятий. Алгебра. Корни, степени и логарифмы, функция и производная. База для решения сложных задач 2 части ЕГЭ.

Синус, косинус, тангенс - при произнесении этих слов в присутствии учеников старших классов можно быть уверенным, что две трети из них потеряют интерес к дальнейшему разговору. Причина кроется в том, что основы тригонометрии в школе преподаются в полном отрыве от реальности, а потому учащиеся не видят смысла в изучении формул и теорем.

В действительности данная область знаний при ближайшем рассмотрении оказывается весьма интересной, а также прикладной - тригонометрия находит применение в астрономии, строительстве, физике, музыке и многих других областях.

Ознакомимся с основными понятиями и назовем несколько причин изучить этот раздел математической науки.

История

Неизвестно, в какой момент времени человечество начало создавать будущую тригонометрию с нуля. Однако документально зафиксировано, что уже во втором тысячелетии до нашей эры египтяне были знакомы с азами этой науки: археологами найден папирус с задачей, в которой требуется найти угол наклона пирамиды по двум известным сторонам.

Более серьезных успехов достигли ученые Древнего Вавилона. На протяжении веков занимаясь астрономией, они освоили ряд теорем, ввели особые способы измерения углов, которыми, кстати, мы пользуемся сегодня: градусы, минуты и секунды были заимствованы европейской наукой в греко-римской культуре, в которую данные единицы попали от вавилонян.

Предполагается, что знаменитая теорема Пифагора, относящаяся к основам тригонометрии, была известна вавилонянам почти четыре тысячи лет назад.

Название

Дословно термин «тригонометрия» можно перевести как «измерение треугольников». Основным объектом изучения в рамках данного раздела науки на протяжении многих веков был прямоугольный треугольник, а точнее - взаимосвязь между величинами углов и длинами его сторон (сегодня с этого раздела начинается изучение тригонометрии с нуля). В жизни нередки ситуации, когда практически измерить все требуемые параметры объекта (или расстояние до объекта) невозможно, и тогда возникает необходимость недостающие данные получить посредством расчётов.

Например, в прошлом человек не мог измерить расстояние до космических объектов, а вот попытки эти расстояния рассчитать встречаются задолго до наступления нашей эры. Важнейшую роль играла тригонометрия и в навигации: обладая некоторыми знаниями, капитан всегда мог сориентироваться ночью по звездам и скорректировать курс.

Основные понятия

Для освоения тригонометрии с нуля требуется понять и запомнить несколько основных терминов.

Синус некоторого угла - это отношение противолежащего катета к гипотенузе. Уточним, что противолежащий катет - это сторона, лежащая напротив рассматриваемого нами угла. Таким образом, если угол составляет 30 градусов, синус этого угла всегда, при любом размере треугольника, будет равен ½. Косинус угла - это отношение прилежащего катета к гипотенузе.

Тангенс - это отношение противолежащего катета к прилежащему (либо, что то же самое, отношение синуса к косинусу). Котангенс - это единица, деленная на тангенс.

Стоит упомянуть и знаменитое число Пи (3,14…), которое представляет собой половину длины окружности с радиусом в одну единицу.

Популярные ошибки

Люди, изучающие тригонометрию с нуля, совершают ряд ошибок - в основном по невнимательности.

Во-первых, при решении задач по геометрии необходимо помнить, что использование синусов и косинусов возможно только в прямоугольном треугольнике. Случается, что учащийся «на автомате» принимает за гипотенузу самую длинную сторону треугольника и получает неверные результаты вычислений.

Во-вторых, поначалу легко перепутать значения синуса и косинуса для выбранного угла: напомним, что синус 30 градусов численно равен косинусу 60, и наоборот. При подстановке неверного числа все дальнейшие расчёты окажутся неверными.

В-третьих, пока задача полностью не решена, не стоит округлять какие бы то ни было значения, извлекать корни, записывать обыкновенную дробь в виде десятичной. Часто ученики стремятся получить в задаче по тригонометрии «красивое» число и сразу же извлекают корень из трёх, хотя ровно через одно действие этот корень можно будет сократить.

Этимология слова «синус»

История слова «синус» поистине необычна. Дело в том, что буквальный перевод этого слова с латыни означает «впадина». Всё потому, что верное понимание слова затерялось при переводе с одного языка на другой.

Названия базовых тригонометрических функций произошли из Индии, где понятие синуса обозначалось словом «тетива» на санскрите - дело в том, что отрезок вместе с дугой окружности, на которую он опирался, походил на лук. Во времена расцвета арабской цивилизации индийские достижения в области тригонометрии были заимствованы, и термин перешел в арабский язык в виде транскрипции. Случилось так, что в этом языке уже было похожее слово, обозначающее впадину, и если арабы понимали фонетическую разницу между родным и заимствованным словом, то европейцы, переводящие научные трактаты на латынь, по ошибке буквально перевели арабское слово, никакого отношения к понятию синуса не имеющее. Им мы и пользуемся по сей день.

Таблицы значений

Существуют таблицы, в которые занесены числовые значения для синусов, косинусов и тангенсов всех возможных углов. Ниже представим данные для углов в 0, 30, 45, 60 и 90 градусов, которые необходимо выучить как обязательный раздел тригонометрии для «чайников», благо запомнить их довольно легко.

Если случилось так, что числовое значение синуса или косинуса угла «вылетело из головы», есть способ вывести его самостоятельно.

Геометрическое представление

Начертим круг, через его центр проведем оси абсцисс и ординат. Ось абсцисс располагается горизонтально, ось ординат - вертикально. Обычно они подписываются как «X» и «Y» соответственно. Теперь из центра окружности проведем прямую таким образом, чтобы между ней и осью X получился нужный нам угол. Наконец, из той точки, где прямая пересекает окружность, опустим перпендикуляр на ось X. Длина получившегося отрезка будет равна численному значению синуса нашего угла.

Данный способ весьма актуален, если вы забыли нужное значение, например, на экзамене, и учебника по тригонометрии под рукой нет. Точной цифры вы таким образом не получите, но разницу между ½ и 1,73/2 (синус и косинус угла в 30 градусов) вы точно увидите.

Применение

Одними из первых специалистов, использующих тригонометрию, были моряки, не имеющие никакого другого ориентира в открытом море, кроме неба над головой. Сегодня капитаны кораблей (самолётов и других видов транспорта) не ищут кратчайший путь по звёздам, зато активно прибегают к помощи GPS-навигации, которая без использования тригонометрии была бы невозможна.

Практически в каждом разделе физики вас ждут расчёты с использованием синусов и косинусов: будь то приложение силы в механике, расчёты пути объектов в кинематике, колебания, распространение волн, преломление света - без базовой тригонометрии в формулах просто не обойтись.

Ещё одна профессия, которая немыслима без тригонометрии - это геодезист. Используя теодолит и нивелир либо более сложный прибор - тахиометр, эти люди измеряют разницу в высоте между различными точками на земной поверхности.

Повторяемость

Тригонометрия имеет дело не только с углами и сторонами треугольника, хотя именно с этого она начинала своё существование. Во всех областях, где присутствует цикличность (биологии, медицине, физике, музыке и т. д.) вы встретитесь с графиком, название которого наверняка вам знакомо - это синусоида.

Такой график представляет собой развёрнутую вдоль оси времени окружность и внешне похож на волну. Если вы когда-нибудь работали с осциллографом на занятиях по физике, вы понимаете, о чем идет речь. Как музыкальный эквалайзер, так и прибор, отображающий сердечные ритмы, используют формулы тригонометрии в своей работе.

В заключение

Задумываясь о том, как выучить тригонометрию, большинство учащихся средней и старшей школы начинают считать её сложной и непрактичной наукой, поскольку знакомятся лишь со скучной информацией из учебника.

Что касается непрактичности - мы уже увидели, что в той или иной степени умение обращаться с синусами и тангенсами требуется практически в любой сфере деятельности. А что касается сложности… Подумайте: если люди пользовались этими знаниями больше двух тысяч лет назад, когда взрослый человек имел меньше знаний, чем сегодняшний старшеклассник, реально ли изучить данную область науки на базовом уровне лично вам? Несколько часов вдумчивых занятий с решением задач - и вы достигнете своей цели, изучив базовый курс, так называемую тригонометрию для «чайников».

Когда-то в школе на изучение тригонометрии выделялся отдельный курс. В аттестат выставляли оценки по трём математическим дисциплинам: алгебре, геометрии и тригонометрии.

Затем в рамках реформы школьного образования тригонометрия перестала существовать как отдельный предмет. В современной школе первое знакомство с тригонометрией происходит в курсе геометрии 8 класса. Более глубокое изучение предмета продолжается в курсе алгебры 10 класса.

Определения синуса, косинуса, тангенса и котангенса сначала даются в геометрии через связь сторон прямоугольного треугольника.

Острого угла в прямоугольном треугольнике называется отношение противолежащего катета к гипотенузе.

Косинусом острого угла в прямоугольном треугольнике называется отношение прилежащего катета к гипотенузе.

Тангенсом острого угла в прямоугольном треугольнике называется отношение противолежащего катета к прилежащему.

Котангенсом острого угла в прямоугольном треугольнике называется отношение прилежащего катета к противолежащему.

Эти определения применимы только для острых углов (от 0º до 90°).

Например,

в треугольнике ABC, где ∠C=90°, BC — катет, противолежащий углу A, AC — прилежащий к углу A катет, AB — гипотенуза.

В курсе алгебры 10 класса вводятся определения синуса, косинуса, тангенса и котангенса для любого угла (в том числе, отрицательного).

Рассмотрим окружность радиуса R с центром в начале координат — точке O(0;0). Точку пересечения окружности с положительным направлением оси абсцисс обозначим P 0 .

В геометрии угол рассматривается как часть плоскости, ограниченная двумя лучами. При таком определении величина угла изменяется от 0° до 180°.

В тригонометрии угол рассматривают как результат поворота луча OP 0 вокруг начальной точки O.

При этом поворот луча против часовой стрелки договорились считать положительным направлением обхода, по часовой стрелке — отрицательным (это соглашение связано с истинным движением Солнца вокруг Земли).

Например, при повороте луча OP 0 вокруг точки O на угол α против часовой стрелки точка P 0 перейдёт в точку P α ,

при повороте на угол α по часовой стрелке — в точку F.

При таком определении величина угла может принимать любые значения.

Если продолжить вращение луча OP 0 против часовой стрелки, при повороте на угол α°+360°, α°+360°·2,…,α°+360°·n, где n — целое число (n∈Ζ), снова попадём в точку P α:

Углы измеряют в градусах и в радианах.

1° — это угол, равный 1/180 части градусной меры развёрнутого угла.

1 радиан — это центральный угол, длина дуги которого равна радиусу окружности:

∠AOB=1 рад.

Обозначения радиана обычно не пишут. Обозначение градуса в записи пропускать нельзя.

Например,

Точка P α , полученная из точки P 0 поворотом луча OP 0 вокруг точки O на угол α против часовой стрелки, имеет координаты P α (x;y).

Опустим из точки P α перпендикуляр P α A на ось абсцисс.

В прямоугольном треугольнике OP α A:

P α A — катет, противолежащий углу α,

OA — катет, прилежащий к углу α,

OP α — гипотенуза.

P α A=y, OA=x, OP α =R.

По определению синуса, косинуса, тангенса и котангенса в прямоугольном треугольнике имеем:

Таким образом, в случае окружности с центром в начале координат произвольного радиуса синусом угла α называется отношение ординаты точки P α к длине радиуса.

Косинусом угла α называется отношение абсциссы точки P α к длине радиуса.

Тангенсом угла α называется отношение ординаты точки P α к её абсциссе.

Котангенсом угла α называется отношение абсциссы точки P α к её ординате.

Значения синуса, косинуса, тангенса и котангенса зависят только от величины α и не зависят от длины радиуса R (это следует из подобия окружностей).

Поэтому удобно выбрать R=1.

Окружность с центром в начале координат и радиусом R=1 называется единичной.

Определения

1) Синусом угла α называется ордината точки P α (x;y) единичной окружности:

2) Косинусом угла α называется абсцисса точки P α (x;y) единичной окружности:

3) Тангенсом угла α называется отношение ординаты точки P α (x;y) к её абсциссе, то есть отношение sinα к cosα (где cosα≠0):

4) Котангенсом угла α называется отношение абсциссы точки P α (x;y) к её ординате, то есть отношение cosα к sinα (где sinα≠0):

Введённые таким образом определения позволяют рассматривать не только тригонометрические функции углов, но и тригонометрические функции числовых аргументов (если рассматривать sinα, cosα, tgα и ctgα как соответствующие тригонометрические функции угла в α радиан, то есть синус числа α — это синус угла в α радиан, косинус числа α — это косинус угла в α радиан и т.д.).

Свойства тригонометрических функций изучаются в курсе алгебры в 10 или 11 классе отдельной темой. Тригонометрические функции широко применяются в физике.

Рубрика: |