Презентация на тему счетчик гейгера по физике. Презентация по физике на тему: "Экспериментальные методы исследования частиц". Счётчик Гейгера применяется в основном для регистрации фотонов и y- квантов

Слайд 1

Слайд 2

Слайд 3

Слайд 4

Слайд 5

Презентацию на тему "Счётчик Гейгера" можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Физика. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 5 слайд(ов).

Слайды презентации

Слайд 1

Слайд 2

Счётчик Гейгера, счётчик Гейгера-Мю́ллера - газоразрядный прибор для автоматического подсчёта числа попавших в него ионизирующих частиц. Представляет собой газонаполненный конденсатор, который пробивается при пролёте ионизирующей частицы через объём газа. Изобретён в 1908 году Гансом Гейгером. Счётчики Гейгера разделяются на несамогасящиеся и самогасящиеся (не требующие внешней схемы прекращения разряда)

Слайд 3

Счётчик Гейгера в быту

В бытовых дозиметрах и радиометрах производства СССР и России обычно применяются счетчики с рабочим напряжением 390 В: «СБМ-20» (по размерам - чуть толще карандаша), СБМ-21 (как сигаретный фильтр, оба со стальным корпусом, пригодный для жёсткого β- и γ-излучений) «СИ-8Б» (со слюдяным окном в корпусе, пригоден для измерения мягкого β-излучения)

Слайд 4

Счётчик Гейгера-Мюллера

Цилиндрический счётчик Гейгера-Мюллера состоит из металлической трубки или металлизированной изнутри стеклянной трубки, и тонкой металлической нити, натянутой по оси цилиндра. Нить служит анодом, трубка - катодом. Трубка заполняется разреженным газом, в большинстве случаев используют благородные газы - аргон и неон. Между катодом и анодом создается напряжение от сотен до тысяч вольт в зависимости от геометрических размеров материала электродов и газовой среды внутри счетчика. В большинстве случаев широкораспространенные отечественные счетчики Гейгера требуют напряжения 400 В.

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.

Счетчик Гейгера

Счетчик Гейгера

Счётчик Гейгера СИ-8Б
(СССР) для измерения
мягкого β-излучения.
Cчётчик Гейгера (или счётчик Гейгера-Мюллера)- газоразрядный
прибор для автоматического подсчёта числа попавших в него ионизирующих
частиц.
Изобретён в 1908 г. Х. Гейгером и Э. Резерфордом, позднее
усовершенствован Гейгером и В. Мюллером

Принцип работы

+
-
R
К усилителю
Стеклянная трубка
Анод
Катод
В газоразрядном счетчике
имеются катод в виде цилиндра
и анод в виде тонкой проволоки
по оси цилиндра. Пространство
между катодом и анодом
заполняется специальной
смесью газов. Между катодом и
анодом прикладывается
напряжение.

Применение счётчика

Широкое применение счётчика Гейгера-Мюллера объясняется высокой
чувствительностью, возможностью регистрировать разного рода излучения,
сравнительной простотой и дешевизной установки. Этот счётчик обладает
практически стопроцентной вероятностью регистрации заряженной частицы,
так как для возникновения разряда достаточно одной электрон-ионной пары.
Однако длительность сигнала со счётчика Гейгера сравнительно велика (≈
10-4 с). Счётчик Гейгера применяется в основном для регистрации фотонов и
y- квантов.
  • Камеру Вильсона можно назвать “окном” в микромир. Она представляет собой герметически закрытый сосуд, заполненный парами воды или спиртами близкими к насыщению.

  • Камера Вильсона сыграла огромную роль в изучении строения вещества. На протяжении нескольких десятилетий она оставалась практически единственным инструментом для визуального исследования ядерных излучений. В 1927 году Вильсон получил за свое изобретение Нобелевскую премию по физике.


Счетчик Гейгера

    Cчётчик Гейгера (или счётчик Гейгера-Мюллера) - газонаполненный счётчик заряженных элементарных частиц, электрический сигнал с которого усилен за счёт вторичной ионизации газового объёма счётчика и не зависит от энергии, оставленной частицей в этом объёме. Изобретён в 1908 г. Х. Гейгером и Э. Резерфордом, позднее усовершенствован Гейгером и В. Мюллером.



Применение счётчика

  • Счётчик Гейгера применяется в основном для регистрации фотонов и y- квантов.

  • Счётчик регистрирует почти все падающие в него электроны.

  • Регистрация сложных частиц затруднена.


Пузырьковая камера

    Пузырьковая камера была изобретена Доналдом Глазером (США) в 1952 году. За своё открытие Глазер получил Нобелевскую премию в 1960 году. Луис Уолтер Альварес усовершенствовал пузырьковую камеру Глазера, использовав в качестве перегретой жидкости водород. А также для анализа сотен тысяч фотографий, получаемых при исследованиях с помощью пузырьковой камеры, Альварес впервые применил компьютерную программу, позволявшую анализировать данные с очень большой скоростью.


  • В пузырьковой камере используется свойство чистой перегретой жидкости вскипать (образовывать пузырьки пара) вдоль пути пролёта заряженной частицы. Перегретая жидкость – это жидкость, нагретая до температуры большей температуры кипения для данных условий.

  • Перегретое состояние достигается быстрым (5-20 мс) уменьшением внешнего давления. На несколько миллисекунд камера становится чувствительной и способна зарегистрировать заряженную частицу. После фотографирования треков давление поднимается до прежней величины, пузырьки “схлопываются” и камера вновь готова к работе


Выполнил: Андреенко Андрей

Гомель 2015

Счётчик Гейгера-Мюллера- изобретён в 1908 г. Г . Гейгером , позднее усовершенствован и В. Мюллером , который реализовал несколько разновидностей прибора.. Он содержит камеру, наполненную газом, поэтому этот прибор ещё называют газонаполненным детекторам.

Принцип работы счетчика Счетчик представляет собой газоразрядный объем с сильно неоднородным

электрическим полем. Чаще всего применяются счетчики с коаксиально расположенными цилиндрическими электродами:

внешний цилиндр - катод и нить диаметром 0,1 мм, натянутая на его оси - анод. Внутренний, или собирающий, электрод (анод) укреплен на изоляторах. Этот электрод обычно изготавливают из вольфрама, позволяющего получить прочную и однородную проволоку малого диаметра. Другой электрод (катод) составляет обычно часть оболочки счетчика. Если стенки трубки стеклянные, ее внутреннюю поверхность покрывают проводящим слоем (медь, вольфрам, нихром и т. д.). Электроды располагаются в герметически замкнутом резерву- аре, наполненном каким-либо газом (гелий, аргон и др.) до давления от нескольких сантиметров до десятков сантиметров ртутного столба. Для того, чтобы перенос отрицательных зарядов в счетчике осуществлялся свободными электронами, газы, используемые для наполнения счетчиков, должны обладать достаточно малым коэффициентом прилипания электронов (как правило, это благородные газы). Для регистрации частиц, обладающих малым пробегом (α- частицы, электроны), в резервуаре счетчика делается окно, через которое частицы попадают в рабочий объем.

а - торцевой, б - цилиндрический, в - игольчатый, г - счетчик с рубашкой, д - плоскопараллельный

Счётчики Гейгера разделяются на несамогасящиеся и самогасящиеся

Внешняя схема гашения разряда.

В газонаполненных счетчиках положительные ионы проходят весь путь до катода и нейтрализуются вблизи него, вырывая электроны из металла. Эти дополнительные электроны могут привести к возникновению следующего разряда, если не принять мер для его предупреждения и гашения. К гашению разряда в счетчике, приводит включение в цепь анода счетчика сопротивления. При наличии такого сопротивления разряд в счетчике прекращается, когда напряжение между анодом и катодом снижается из-за собирания электронов на аноде до величин, меньших тех, которые необходимы для поддержания разряда. Существенным недостатком такой схемы является низкая временная разрешающая способность, порядка 10−3 с и более.

Самогасящиеся счетчики.

В настоящее время несамогасящиеся счетчики применяются редко, так как разработаны хорошие самогасящиеся счетчики. Очевидно, чтобы прекратить раз- ряд в счетчике, необходимо устранить причины, которые поддерживают разряд после прохождения ионизирующей частицы через объем счетчика. Таких причин две. Одна из них - ультрафиолетовое излучение, возникающее в процессе разряда. Фотоны этого излучения играют двойную роль в процессе разряда. Их положительная роль в самогасящемся счетчике

Распространение разряда вдоль нити счетчика, отрицательная роль - вырывание фотоэлектронов из катода, приводящее к поддержанию разряда. Другой причиной возникновения вторичных электронов с катода является нейтрализация на катоде положительных ионов. В нормально работающем счетчике разряд должен обрываться на первой лавине. Наиболее распространенный способ быстрого гашения разряда состоит в добавлении к основному газу, наполняющему счетчик, другого газа, способного гасить разряд. Счетчик с таким наполнением называется самогасящимся.

Газоразрядный счетчик Гейгера


R К усилителю Стеклянная трубка Анод Катод В газоразрядном счетчике имеются катод в виде цилиндра и анод в виде тонкой проволоки по оси цилиндра. Пространство между катодом и анодом заполняется специальной смесью газов. Между катодом и анодом прикладывается напряжение.


Сцинтилляционный счетчик


Черенковский счетчик Схема черенковского счётчика: слева – конус черенковского излучения, справа – устройство счётчика. 1 - частица, 2 - траектория частицы, 3 - фронт волны, 4 - радиатор, 5 - ФЭУ (показано развитие лавины вторичных электронов, вызванное фотоэлектроном), 6 - фотокатод.


Камера Вильсона Камера Вильсона. Емкость со стеклянной крышкой и поршнем в нижней части заполнена насыщенными парами воды, спирта или эфира. Когда поршень опускается, то за счет адиабатического расширения пары охлаждаются и становятся пересыщенными. Заряженная частица, проходя сквозь камеру, оставляет на своем пути цепочку ионов. Пар конденсируется на ионах, делая видимым след частицы


Первый детектор заряженных частиц – камера Вильсона - был создан 19 апреля 1911 года. Камера представляла собой стеклянный цилиндр диаметром 16,5 см и высотой 3,5 см. Сверху цилиндр закрывался приклеенным зеркальным стеклом, через которое фотографировали следы частиц. Внутри находился второй цилиндр, в нем – деревянное кольцо, опущенное в воду. Испаряясь с поверхности кольца, она насыщала камеру водяными парами. Вакуумный насос создавал разрежение в шаровидной емкости, соединенной с камерой трубкой с вентилем. При открывании вентиля в камере создавалось разрежение, водяные пары становились пересыщенными, и на следах заряженных частиц происходила их конденсация в виде полосок тумана (именно поэтому в зарубежной литературе прибор называется the cloud chamber – «туманная камера»)


Пузырьковая камера. Емкость заполнена хорошо очищенной жидкостью. Центры образования пара в жидкости отсутствуют, поэтому ее можно перегреть выше точки кипения. Но проходящая частица оставляет за собой ионизованный след, вдоль которого жидкость вскипает, отмечая траекторию цепочкой пузырьков. В современных камерах используются жидкие газы – пропан, гелий, водород, ксенон, неон и др. На снимке: пузырьковая камера, сконструированная в ФИАНе. 1955–1956 годы. Пузырьковая камера


Фотография столкновения ионов серы и золота в стримерной (разновидность искровой) камере. Треки рожденных при столкновении заряженных частиц в ней выглядят как цепочки отдельных несливающихся разрядов - стримеров.

Искровая камера


Трек частицы в узкозазорной искровой камере Следы частиц в стримерной искровой камере


Метод толстослойных фотоэмульсий Заряжённые частицы создают скрытые изображения следа движения. По длине и толщине трека можно оценить энергию и массу частицы. Фотоэмульсия имеет большую плотность, поэтому треки получаются короткими.


Мы ознакомились с описанием устройств, применяемых наиболее широко при исследовании элементарных частиц и в ядерной физике.