Оксиды: классификация и химические свойства. Основания (основные гидроксиды) Основные свойства высших оксидов и гидроксидов

Так как оксиды d-металлов нерастворимы в воде, их гидроксиды получают косвенным путем с помощью обменных реакций между их солями и растворами щелочей:

ZnCl 2 + 2NaOH = Zn(OH) 2 + 2NaCl;

MnCl 2 + 2NaOH = Mn(OH) 2 + 2NaCl (в отсутствии кислорода);

FeSO 4 + 2KOH = Fe(OH) 2 + K 2 SO 4 (в отсутствии кислорода) .

Гидроксиды d-элементов в низших степенях окисления являются слабыми основаниями; они нерастворимы в воде, но хорошо растворяются в кислотах:

Cu(OH) 2 + 2HCl = CuCl 2 + H 2 O

Cu(OH) 2 + H 2 SO 4 = CuSO 4 + H 2 O

Гидроксиды d-элементов в промежуточных степенях окисления и гидроксид цинка растворяются не только в кислотах, но и в избытке растворов щелочей с образованием гидроксокомплексов (т.е. проявляют амфотерные свойства), например:

Zn(OH) 2 + H 2 SO 4 = ZnSO 4 + 2H 2 O;

Zn(OH) 2 + 2NaOH = Na 2 ;

Cr(OH) 3 + 3HNO 3 = Cr(NO 3) 3 + 3H 2 O;

Cr(OH) 3 + 3KOH = K 3 .

В более высоких степенях окисления переходные металлы образуют гидроксиды, которые проявляют кислотные свойства или амфотерные свойства с преобладанием кислотных:

С увеличением степени окисления элемента основные свойства оксидов и гидроксидов ослабевают, а кислотные - возрастают.

Поэтому, по периоду слева направо наблюдается усиление кислотных свойств гидроксидов d-металлов в высших степенях окисления до подгруппы Mn, затем кислотные свойства ослабевают:

Sc(OH) 3 - TiO 2 xH 2 O - V 2 O 5 xH 2 O - H 2 CrO 4 - HMnO 4

Усиление кислотных свойств

Fe(OH) 3 - Co(OH) 2 - Cu(OH) 2 - Zn(OH) 2

Медленное ослабление кислотных свойств

Рассмотрим изменение свойств гидроксидов d-металлов в подгруппах. Сверху вниз по подгруппе основные свойства гидроксидов d-элементов в высших степенях окисления возрастают, кислотные свойства уменьшаются. Например, для шестой группы d-металлов:

H 2 CrO 4 - резко - MoO 3 H 2 O - слабо - WO 3 H 2 O

Кислотные свойства уменьшаются

Окислительно-восстановительные свойства соединений d-элементов

Соединения d - элементов в низших степенях окисления проявляют, в основном, восстановительные свойства, особенно в щелочной среде. Поэтому, например, гидроксиды Mn(+2), Cr(+2), Fe(+2) являются очень неустойчивыми и быстро окисляются кислородом воздуха:

2Mn(OH)2 + O2 + 2H2O = 2Mn(OH)4;

4Cr(OH) 2 + O 2 + 2H 2 O = 4Cr(OH) 3

Чтобы гидроксид кобальта (II) или никеля (II) перевести в Co(OH) 3 или Ni(OH) 3 , необходимо использовать более сильный окислитель - например, перекись водорода H 2 O 2 в щелочной среде или бром Br 2:

2Co(OH) 2 + H 2 O 2 = 2Co(OH) 3;

2 Ni(OH) 2 + Br 2 +2NaOH = 2 Ni(OH) 3 + 2NaBr

Производные Ti(III), V(III), V(II), Cr (II) легко окисляются на воздухе, некоторые соли могут окисляться даже водой :

2Ti 2 (SO 4) 3 + O 2 + 2H 2 O = 4TiOSO 4 + 2H 2 SO 4;

2CrCl 2 + 2H 2 O = 2Cr(OH) Cl 2 + H 2

Соединения d-элементов в высших степенях окисления (от +4 до +7) обычно проявляют окислительные свойства. Однако, соединения Ti (IV) и V (V) всегда устойчивы и поэтому обладают относительно слабыми окислительными свойствами:

TiOSO 4 + Zn + H 2 SO 4 = Ti 2 (SO 4) 3 + ZnSO 4 + H 2 O;

Na 3 VO 4 + Zn + H 2 SO 4 = VOSO 4 + ZnSO 4 + H 2 O

Восстановление идет в жестких условиях - атомарным водородом в момент его выделения (Zn + 2H + = 2H· + Zn 2+).

А соединения хрома в высших степенях окисления являются сильными окислителями, особенно в кислой среде:

K2Cr2O7 + 3SO2 + H2SO4 = Cr2(SO4)3 + K2SO4 + H2O;

2CrO 3 + C 2 H 5 OH = Cr 2 O 3 + CH 3 COH + H 2 O

Еще более сильные окислительные свойства проявляют соединения Mn(VI), Mn(VII) и Fe(VI):

2KMnO 4 + 6KI + 4H 2 O = 2MnO 2 + 3I 2 + 8KOH;

4K 2 FeO 4 + 10H 2 SO 4 = 2Fe 2 (SO 4) 3 + 3O 2 +10H 2 O+ 4K 2 SO 4

Таким образом, окислительные свойства соединений d-элементов в высших степенях окисления по периоду слева направо возрастают.

Окислительная способность соединений d-элементов в высших степенях окисления по подгруппе сверху вниз ослабевает . Например, в подгруппе хрома: бихромат калия K 2 Cr 2 O 7 взаимодействует даже с таким слабым восстановителем, как SO 2 . Чтобы восстановить молибдат- или вольфрамат-ионы необходим очень сильный восстановитель, например, солянокислый раствор хлорида олова (II):

K 2 Cr 2 O 7 + SO 2 + H 2 SO 4 = Cr 2 (SO 4) 3 + K 2 SO 4 + H 2 O

3 (NH 4) 2 MoO 4 + НSnCl 3 + 9HCl = MoO 3 MoO 5 + H 2 SnCl 6 +4H 2 O + 6NH 4 Cl

Последняя реакция идет при нагревании, а степень окисления d-элемента уменьшается совсем незначительно.

Соединения d-металлов в промежуточной степени окисления обладают окислительно-восстановительной двойственностью . Например, соединения железа (III) в зависимости от характера вещества-партнера могут проявлять как свойства восстановителя:

2FeCl3 + Br2 + 16KOH = 2K2FeO4 + 6KBr + 6KCl +8H2O,

так и окислительные свойства:

2FeCl 3 + 2KI = 2FeCl 2 + I 2 +2KCl.

3. Гидроксиды

Среди многоэлементных соединений важную группу составляют гидроксиды. Некоторые из них проявляют свойства оснований (основные гидроксиды) - NaOH , Ba (OH ) 2 и т.п.; другие проявляют свойства кислот (кислотные гидроксиды) - HNO 3 , H 3 PO 4 и другие. Существуют и амфотерные гидроксиды, способные в зависимости от условий проявлять как свойства оснований, так и свойства кислот - Zn (OH ) 2 , Al (OH ) 3 и т.п.

3.1. Классификация, получение и свойства оснований

Основаниями (основными гидроксидами) с позиции теории электролитической диссоциации являются вещества, диссоциирующие в растворах с образованием гидроксид-ионов ОН - .

По современной номенклатуре их принято называть гидроксидами элементов с указанием, если необходимо, валентности элемента (римскими цифрами в скобках): КОН - гидроксид калия, гидроксид натрия NaOH , гидроксид кальция Ca (OH ) 2 , гидроксид хрома (II ) - Cr (OH ) 2 , гидроксид хрома (III ) - Cr (OH ) 3 .

Гидроксиды металлов принято делить на две группы: растворимые в воде (образованные щелочными и щелочноземельными металлами - Li , Na , K , Cs , Rb , Fr , Ca , Sr , Ba и поэтому называемые щелочами) и нерастворимые в воде . Основное различие между ними заключается в том, что концентрация ионов ОН - в растворах щелочей достаточно высока, для нерастворимых же оснований она определяется растворимостью вещества и обычно очень мала. Тем не менее, небольшие равновесные концентрации иона ОН - даже в растворах нерастворимых оснований определяют свойства этого класса соединений.

По числу гидроксильных групп (кислотность) , способных замещаться на кислотный остаток, различают:

Однокислотные основания - KOH , NaOH ;

Двухкислотные основания - Fe (OH ) 2 , Ba (OH ) 2 ;

Трехкислотные основания - Al (OH ) 3 , Fe (OH ) 3 .

Получение оснований

1. Общим методом получения оснований является реакция обмена, с помощью которой могут быть получены как нерастворимые, так и растворимые основания:

CuSO 4 + 2KOH = Cu(OH) 2 ↓ + K 2 SO 4 ,

K 2 SO 4 + Ba(OH) 2 = 2KOH + BaCO 3 ↓ .

При получении этим методом растворимых оснований в осадок выпадает нерастворимая соль.

При получении нерастворимых в воде оснований, обладающих амфотерными свойствами, следует избегать избытка щелочи, так как может произойти растворение амфотерного основания, например,

AlCl 3 + 3KOH = Al(OH) 3 + 3KCl,

Al(OH) 3 + KOH = K.

В подобных случаях для получения гидроксидов используют гидроксид аммония, в котором амфотерные оксиды не растворяются:

AlCl 3 + 3NH 4 OH = Al(OH) 3 ↓ + 3NH 4 Cl.

Гидроксиды серебра, ртути настолько легко распадаются, что при попытке их получения обменной реакцией вместо гидроксидов выпадают оксиды:

2AgNO 3 + 2KOH = Ag 2 O ↓ + H 2 O + 2KNO 3 .

2. Щелочи в технике обычно получают электролизом водных растворов хлоридов:

2NaCl + 2H 2 O = 2NaOH + H 2 + Cl 2 .

(суммарная реакция электролиза)

Щелочи могут быть также получены взаимодействием щелочных и щелочноземельных металлов или их оксидов с водой:

2 Li + 2 H 2 O = 2 LiOH + H 2 ,

SrO + H 2 O = Sr (OH ) 2 .

Химические свойства оснований

1. Все нерастворимые в воде основания при нагревании разлагаются с образованием оксидов:

2 Fe (OH ) 3 = Fe 2 O 3 + 3 H 2 O ,

Ca (OH ) 2 = CaO + H 2 O .

2. Наиболее характерной реакцией оснований является их взаимодействие с кислотами - реакция нейтрализации. В нее вступают как щелочи, так и нерастворимые основания:

NaOH + HNO 3 = NaNO 3 + H 2 O ,

Cu(OH) 2 + H 2 SO 4 = CuSO 4 + 2H 2 O.

3. Щелочи взаимодействуют с кислотными и с амфотерными оксидами:

2KOH + CO 2 = K 2 CO 3 + H 2 O,

2NaOH + Al 2 O 3 = 2NaAlO 2 + H 2 O.

4. Основания могут вступать в реакцию с кислыми солями:

2NaHSO 3 + 2KOH = Na 2 SO 3 + K 2 SO 3 +2H 2 O,

Ca(HCO 3) 2 + Ba(OH) 2 = BaCO 3 ↓ + CaCO 3 + 2H 2 O.

Cu(OH) 2 + 2NaHSO 4 = CuSO 4 + Na 2 SO 4 +2H 2 O.

5. Необходимо особенно подчеркнуть способность растворов щелочей реагировать с некоторыми неметаллами (галогенами, серой, белым фосфором, кремнием):

2 NaOH + Cl 2 = NaCl + NaOCl + H 2 O (на холоду),

6 KOH + 3 Cl 2 = 5 KCl + KClO 3 + 3 H 2 O (при нагревании),

6KOH + 3S = K 2 SO 3 + 2K 2 S + 3H 2 O,

3KOH + 4P + 3H 2 O = PH 3 + 3KH 2 PO 2 ,

2NaOH + Si + H 2 O = Na 2 SiO 3 + 2H 2 .

6. Кроме того, концентрированные растворы щелочей при нагревании способны растворять также и некоторые металлы (те, соединения которых обладают амфотерными свойствами):

2Al + 2NaOH + 6H 2 O = 2Na + 3H 2 ,

Zn + 2KOH + 2H 2 O = K 2 + H 2 .

Растворы щелочей имеют рН > 7 (щелочная среда), изменяют окраску индикаторов (лакмус - синяя, фенолфталеин - фиолетовая).

М.В. Андрюxoва, Л.Н. Бopoдина


Калия, натрия или лития, могут взаимодействовать с водой. В этом случае в продуктах реакции обнаруживаются соединения, относящиеся к гидроксидам. Свойства этих веществ, особенности протекания химических процессов, в которых участвуют основания, обусловлены присутствием в их молекулах гидроксильной группы. Так, в реакциях электролитической диссоциации основания расщепляются на ионы металла и анионы OH - . Как основания взаимодействуют с оксидами неметаллов, кислотами и солями, мы и рассмотрим в нашей статье.

Номенклатура и строение молекулы

Чтобы правильно назвать основание, требуется к названию металлического элемента прибавить слово гидроксид. Приведем конкретные примеры. Основание алюминия относится к амфотерным гидроксидам, свойства которых мы рассмотрим в статье. Обязательное присутствие в молекулах оснований гидроксильной группы, связанной с катионом металла ионным типом связи, можно определить с помощью индикаторов, например, фенолфталеина. В водной среде избыток ионов OH - определяется по изменению цвета раствора индикатора: бесцветный фенолфталеин становится малиновым. Если металл проявляет несколько валентностей, он может образовывать несколько оснований. Например, железо имеет два основания, в которых равна 2 или 3. Первое соединение характеризуется признаками второе - амфотерных. Поэтому свойства высших гидроксидов отличаются от соединений, в которых металл имеет низшую степень валентности.

Физическая характеристика

Основания - это твердые вещества, устойчивые к нагреванию. По отношению к воде они делятся на растворимые (щелочи) и нерастворимые. Первая группа образована активными в химическом отношении металлами - элементами первой и второй групп. Нерастворимые в воде вещества состоят из атомов других металлов, чья активность уступает натрию, калию или кальцию. Примерами таких соединений могут служить основания железа или меди. Свойства гидроксидов будут зависеть от того, к какой группе веществ они относятся. Так, щелочи являются термически прочными и не разлагаются при нагревании, тогда, как нерастворимые в воде основания под действием высокой температуры разрушаются, образуя оксид и воду. Например, основание меди разлагается следующим образом:

Cu(OH) 2 = CuO + H 2 O

Химические свойства гидроксидов

Взаимодействие между собой двух важнейших групп соединений - кислот и оснований - именуют в химии реакцией нейтрализации. Такое название можно объяснить тем, что химически агрессивные гидроксиды и кислоты образуют нейтральные продукты - соли и воду. Являясь, по сути, обменным процессом между двумя сложными веществами, нейтрализация характерна как для щелочей, так и для нерастворимых в воде оснований. Приведем уравнение реакции нейтрализации между едким калием и хлоридной кислотой:

KOH + HCl = KCl + H 2 O

Важное свойство оснований щелочных металлов является их способность реагировать с кислотными оксидами, в результате можно получить соль и воду. Например, пропуская через гидроксид натрия углекислый газ, можно получить его карбонат и воду:

2NaOH + CO 2 = Na 2 CO 3 + H 2 O

К реакциям ионного обмена относится взаимодействие между щелочами и солями, идущее с образованием нерастворимых гидроксидов или солей. Так, приливая по каплям раствор в раствор сернокислой меди, можно получить голубой желеобразный осадок. Это основание меди, нерастворимое в воде:

CuSO 4 + 2NaOH = Cu(OH) 2 + Na 2 SO 4

Химические свойства гидроксидов, нерастворимых в воде, отличаются от щелочей тем, что они при небольшом нагревании теряют воду - дегидратируются, переходя в форму соответствующего основного окисла.

Основания, проявляющие двойственные свойства

Если элемент или может реагировать и с кислотами, и с щелочами - его называют амфотерным. К таковым относятся, например, цинк, алюминий и их основания. Свойства амфотерных гидроксидов позволяют записывать их молекулярные формулы как в выделяя при этом гидроксогруппу, так и в виде кислот. Представим несколько уравнений реакций основания алюминия с хлоридной кислотой и гидроксидом натрия. Они иллюстрируют особые свойства гидроксидов, относящихся к амфотерным соединениям. Вторая реакция проходит с распадом щелочи:

2Al(OH) 3 + 6HCl = 2AlCl 3 + 3H 2 O

Al(OH) 3 + NaOH = NaAlO 2 + 2H 2 O

Продуктами процессов будут вода и соли: хлорид алюминия и алюминат натрия. Все амфотерные основания не растворяются в воде. Добывают их в результате взаимодействия соответствующих солей и щелочей.

Способы получения и применение

В промышленности, требующей больших объемов щелочей, их получают электролизом солей, содержащих катионы активных металлов первой и второй группы периодической системы. Сырьем для добычи, например, едкого натрия, служит раствор поваренной соли. Уравнение реакции будет таким:

2NaCl + 2H 2 O = 2NaOH + H 2 + Cl 2

Основания малоактивных металлов в лаборатории получают взаимодействием щелочей с их солями. Реакция относится к типу ионного обмена и заканчивается выпадением осадка основания. Простой способ получения щелочей - это реакция замещения, проходящая между активным металлом и водой. Она сопровождается разогреванием реагирующей смеси и относится к экзотермическому типу.

Свойства гидроксидов используют в промышленности. Особую роль здесь играют щелочи. Их применяют в качестве очистителей керосина и бензина, для получения мыла, обработки натуральной кожи, а также в технологиях производства искусственного шелка и бумаги.

Основные классы неорганических соединений

*(Уважаемые студенты! Для изучения данной темы и выполнения тестовых заданий в качестве наглядного материала необходимо иметь таблицу Периодической системы элементов, таблицу растворимости соединений и ряд напряжений металлов.

Все вещества делятся на простые, состоящие из атомов одного элемента, и сложные, состоящие из атомов двух и более элементов. Сложные вещества принято делить на органические, к которым относятся почти все соединения углерода (кроме простейших, как, например: CO, CO 2 , H 2 CO 3 , HCN) и неорганические. К наиболее важным классам неорганических соединений относятся:

а) оксиды - бинарные соединения элемента с кислородом;

б) гидроксиды, которые подразделяются на оснóвные (основания), кислотные (кислоты) и амфотерные;

Прежде, чем приступить к характеристике классов неорганических соединений, необходимо рассмотреть понятия валентности и степени окисления.

Валентность и степень окисления

Валентность характеризует способность атома образовывать химические связи. Количественно валентность - это число связей, которые образует атом данного элемента в молекуле. В соответствии с современными представлениями о строении атомов и химической связи атомы элементов способны отдавать, присоединять электроны и образовывать общие электронные пары. Полагая, что каждая химическая связь образована парой электронов, валентность можно определить как число электронных пар, которыми атом связан с другими атомами. Валентность не имеет знака.

Степень окисления (СО ) - это условный заряд атома в молекуле, вычисленный из предположения, что молекула состоит из ионов.

Ионы - это положительно и отрицательно заряженные частицы вещества. Положительно заряженные ионы называются катионами , отрицательно - анионами . Ионы могут быть простыми, например Cl - (состоять из одного атома) или сложными, например SO 4 2- (состоять из нескольких атомов).

Если молекулы веществ состоят из ионов, то условно можно предположить, что между атомами в молекуле осуществляется чисто электростатическая связь. Это значит, что независимо от природы химической связи в молекуле, атомы более электроотрицательного элемента притягивают к себе электроны менее электроотрицательного атома.



Степень окисления обычно обозначается римскими цифрами со знаком “+” или “-” перед цифрой (например, +III), а заряд иона обозначается арабской цифрой со знаком “+” или “-” позади цифры (например, 2-).

Правила определения степени окисления элемента в соединении:

1. СО атома в простом веществе равна нулю, например, О 2 0 , С 0 , Na 0 .

2. СО фтора всегда равна -I, т.к. это самый электроотрицательный элемент.

3. СО водорода равна +I в соединениях с неметаллами (Н 2 S, NH 3) и -I в соединениях с активными металлами (LiH, CaH 2).

4. СО кислорода во всех соединениях равна -II (кроме пероксида водорода Н 2 О 2 и его производных, где степень окисления кислорода равна -I, и ОF 2 , где кислород проявляет СО +II).

5. Атомы металлов всегда имеют положительную степень окисления, равную их номеру группы в Периодической таблице, или меньшую, чем номер группы. Для первых трех групп СО металлов совпадает с номером группы, исключение составляют медь и золото, для которых более устойчивыми степенями окисления являются +II и +III соответственно.

6. Высшая (максимальная) положительная СО элемента равна номеру группы, в которой он расположен (например, Р находится в V группе А подгруппе и имеет СО +V). Это правило применимо к элементам как главных, так и побочных подгрупп. Исключение - для элементов I B и VIII А и В подгрупп, а также для фтора и кислорода.

7. Отрицательная (минимальная) СО характерна только для элементов главных подгрупп IV A - VII A, причем она равна номеру группы минус 8.

8. Сумма СО всех атомов в молекуле равна нулю, а в сложном ионе равна заряду этого иона.

Пример: Рассчитайте степень окисления хрома в соединении K 2 Cr 2 O 7 .

Решение: Обозначим СО хрома за х . Зная СО кислорода, равную -II, и СО калия +I (по номеру группы, в которой находится калий) составим уравнение:

K 2 +I Cr 2 х O 7 -II

1·2 + х ·2 + (-2)·7 = 0

Решив уравнение, получим х = 6. Следовательно, СО атома хрома равна +VI.

Оксиды

Оксиды - это соединения элементов с кислородом. Степень окисления кислорода в оксидах -II.

Составление формул оксидов

Формула любого оксида будет иметь вид Э 2 О х, где х - степень окисления элемента, образующего оксид (четные индексы следует сократить на два, например, пишут не S 2 O 6 , а SO 3). Для составления формулы оксида необходимо знать, в какой группе Периодической системы находится элемент. Максимальная СО элемента равна номеру группы. В соответствии с этим формула высшего оксида любого элемента в зависимости от номера группы будет иметь вид:

Задание : Составьте формулы высших оксидов марганца и фосфора.

Решение : Марганец расположен в VII B подгруппе Периодической системы, значит его высшая СО равна +VII. Формула высшего оксида будет иметь вид Mn 2 O 7 .

Фосфор расположен в V A подгруппе, отсюда формула его высшего оксида имеет вид Р 2 О 5 .

Если элемент находится не в высшей степени окисления, необходимо знать эту степень окисления. Например, сера, находясь в VI A подгруппе, может иметь оксид, в котором она проявляет СО равную +IV. Формула оксида серы (+IV) будет иметь вид SO 2 .

Номенклатура оксидов

В соответствии с Международной номенклатурой (IUPAC) название оксидов образуется из слова “оксид” и названия элемента в родительном падеже.

Например: СаО - оксид (чего?) кальция

Н 2 О - оксид водорода

SiO 2 - оксид кремния

CО элемента, образующего оксид, можно не указывать, если он проявляет только одну СО, например:

Al 2 O 3 - оксид алюминия;

MgO - оксид магния

Если элемент имеет несколько степеней окисления, необходимо их указывать:

СuO - оксид меди (II), Сu 2 O - оксид меди (I)

N 2 O 3 - оксид азота (III), NO - оксид азота (II)

Сохранились и часто употребляются старые названия оксидов с указанием числа атомов кислорода в оксиде. При этом используются греческие числительные- моно-, ди-, три-, тетра-, пента-, гекса- и т.д.

Например:

SO 2 - диоксид серы, SO 3 - триоксид серы

NO - монооксид азота

В технической литературе, а также в промышленности широко употребляются тривиальные или технические названия оксидов, например:

CaO - негашеная известь, Al 2 O 3 - глинозем

СО 2 - углекислый газ, СО - угарный газ

SiO 2 - кремнезем, SO 2 - сернистый газ

Методы получения оксидов

а) Непосредственное взаимодействие элемента с кислородом в надлежащих условиях:

Al + O 2 → Al 2 O 3 ;(~ 700 °С)

Cu + O 2 → CuO(< 200 °С)

S + O 2 → SO 2

Данным способом нельзя получить оксиды инертных газов, галогенов, “благородных” металлов.

б) Термическое разложение оснований (кроме оснований щелочных и щелочноземельных металлов):

Cu(OH) 2 → CuO + H 2 O(> 200 °С)

Fe(OH) 3 → Fe 2 O 3 + H 2 O(~ 500-700 °С)

в) Термическое разложение некоторых кислот:

H 2 SiO 3 → SiO 2 + H 2 O(1000°)

H 2 CO 3 → CO 2 + H 2 O(кипячение)

г) Термическое разложение солей:

СаСО 3 → СаО + СО 2 (900° C)

FeCO 3 → FeO + CO 2 (490°)

Классификация оксидов

По химическим свойствам оксиды делятся на солеобразующие и несолеобразующие.

Несолеобразующие (безразличные) оксиды не образуют ни кислот, ни оснований (не взаимодействуют ни с кислотами, ни с основаниями, ни с водой). К ним относятся: оксид углерода (II) - CO, оксид азота (I) - N 2 O, оксид азота (II) - NO и некоторые другие.

Солеобразующие оксиды подразделяются на оснóвные, кислотные и амфотерные.

Оснóвными называют те оксиды, которым соответствуют гидроксиды, называемые основаниями. Это оксиды большинства металлов в низшей степени окисления (Li 2 O, Na 2 O, MgO, CaO, Ag 2 O, Cu 2 O, CdO, FeO, NiO, V 2 O 3 и др.).

Присоединяя (прямо или косвенно) воду, основные оксиды образуют основные гидроксиды (основания). Например, оксиду меди (II) - СuO соответствует гидроксид меди (II) - Cu(OH) 2 , оксиду BaO - гидроксид бария - Ba(OH) 2 .

Важно помнить, что СО элемента в оксиде и соответствующем ему гидроксиде одинакова!

Оснoвные оксиды взаимодействуют с кислотами или кислотными оксидами, образуя соли.

Кислотными называют те оксиды, которым соответствуют кислотные гидроксиды, называемые кислотами . Кислотные оксиды образуют неметаллы и некоторые металлы в высших степенях окисления (N 2 O 5 , SO 3 , SiO 2 , CrO 3 , Mn 2 O 7 и др.).

Присоединяя воду (прямо или косвенно), кислотные оксиды образуют кислоты. Например, оксиду азота (III) - N 2 O 3 соответствует азотистая кислота HNO 2 , оксиду хрома (VI) - CrO 3 - хромовая кислота H 2 CrO 4 .

Кислотные оксиды взаимодействуют с основаниями или основными оксидами, образуя соли.

Кислотные оксиды можно рассматривать как продукты “отнятия” воды от кислот и называть их ангидридами (т.е. безводными). Например, SO 3 - ангидрид серной кислоты H 2 SO 4 (или просто серный ангидрид), P 2 O 5 - ангидрид ортофосфорной кислоты H 3 PO 4 (или просто фосфорный ангидрид).

Важно помнить, что СО элемента в оксиде и соответствующей ему кислоте, а также в анионе этой кислоты одинакова!

Амфотерными называются те оксиды, которым могут соответствовать и кислоты, и основания. К ним относятся BeO, ZnO, Al 2 O 3 , SnO, SnO 2 , Cr 2 O 3 и оксиды некоторых других металлов, находящихся в промежуточных степенях окисления. Кислотные и оснóвные свойства у этих оксидов выражены в различной степени. Например, у оксидов алюминия и цинка кислотные и основные свойства выражены примерно одинаково, у Fe 2 O 3 преобладают основные свойства, у PbO 2 преобладают кислотные свойства.

Амфотерные оксиды образуют соли при взаимодействии как с кислотами, так и с основаниями.

Химические свойства оксидов

Химические свойства оксидов (и соответствующих им гидроксидов) подчиняются принципу кислотно-основного взаимодействия, согласно которому соединения, проявляющие кислотные свойства, реагируют с соединениями, обладающими основными свойствами.

Основные оксиды взаимодействуют:

а) с кислотами:

CuO + H 2 SO 4 → H 2 O + CuSO 4 ;

BaO + H 3 PO 4 → H 2 O + Ba 3 (PO 4) 2 ;

б) с кислотными оксидами:

CuO + SO 2 → CuSO 3 ;

BaO + N 2 O 5 → Ba(NO 3) 2 ;

в) оксиды щелочных и щелочноземельных металлов могут растворяться в воде:

Na 2 O + H 2 O → NaOH;

BaO + H 2 O → Ba(OH) 2 .

Кислотные оксиды взаимодействуют:

а) с основаниями:

N 2 O 3 + NaOH → H 2 O + NaNO 2 ;

CO 2 + Fe(OH) 2 → H 2 O + FeCO 3 ;

б) с основными оксидами:

SO 2 + CaO → CaSO 3 ;

SiO 2 + Na 2 O → Na 2 SiO 3 ;

в) могут (но не все) растворяться в воде:

SO 3 + H 2 O → H 2 SO 4 ;

P 2 O 3 + H 2 O → H 3 PO 3 .

Амфотерные оксиды могут взаимодействовать:

а) c кислотами:

ZnO + H 2 SO 4 → H 2 O + ZnSO 4 ;

Al 2 O 3 + H 2 SO 4 → H 2 O + Al 2 (SO 4) 3 ;

б) с кислотными оксидами:

ZnO + SO 3 → ZnSO 4 ;

Al 2 O 3 + SO 3 → Al 2 (SO 4) 3 ;

в) с основаниями:

ZnO + NaOH + H 2 O → Na 2 ;

Al 2 O 3 + NaOH + H 2 O → Na 3 ;

г) c основными оксидами:

ZnO + Na 2 O → Na 2 ZnO 2 ;

Al 2 O 3 + Na 2 O → NaAlO 2 .

В первых двух случаях амфотерные оксиды проявляют свойства оснóвных оксидов, в двух последних случаях - свойства кислотных оксидов.

Гидроксиды

Гидроксиды представляют собой гидраты оксидов с общей формулой m Э 2 О х ·n H 2 O (n и m - небольшие целые числа, х - валентность элемента). Гидроксиды отличаются от оксидов по составу только наличием воды в их молекуле. По своим химическим свойствам гидроксиды делятся на основные (основания), кислотные (кислоты) и амфотерные .

Основания (основные гидроксиды)

Основанием называется соединение элемента с одной, двумя, тремя и реже четырьмя гидроксильными группами с общей формулой Э(ОН) х . В качестве элемента всегда выступают металлы главных или побочных подгрупп.

Растворимые основания - это электролиты, которые в водном растворе диссоциируют (распадаются на ионы) с образованием анионов гидроксильной группы ОН ‾ и катиона металла. Например:

KOH = K + + OH ‾ ;

Ba(OH) 2 = Ba 2+ + 2OH ‾

За счёт наличия в водном растворе гидроксильных ионов ОН ‾ основания проявляют щелочную реакцию среды.

Составление формулы основания

Чтобы составить формулу основания, необходимо написать символ металла и, зная его степень окисления, приписать рядом соответствующее число гидроксильных групп. Например: иону Mg +II соответствует основание Mg(OH) 2 , иону Fe +III соответствует основание Fe(OH) 3 и т.д. Для первых трех групп главных подгрупп Периодической системы степень окисления металлов равна номеру группы, поэтому формула основания будет ЭОН (для металлов I A подгруппы), Э(OH) 2 (для металлов II A подгруппы), Э(ОН) 3 (для металлов III A подгруппы). Для других групп (в основном побочных подгрупп) необходимо знать степень окисления элемента, т.к. она может не совпадать с номером группы.

Номенклатура оснований

Названия оснований образуются из слова “гидроксид” и названия элемента в родительном падеже, после которого римскими цифрами в скобках указывается степень окисления элемента, если это необходимо. Например: KOH - гидроксид калия, Fe(OH) 2 - гидроксид железа (II), Fe(OH) 3 - гидроксид железа (III) и т.д.

Существуют технические названия некоторых оснований: NaOH - едкий натр, КОН - едкое кали, Са(ОН) 2 - гашеная известь.

Методы получения оснований

а) Растворение в воде оснoвных оксидов (в воде растворимы только оксиды щелочных и щелочноземельных металлов):

Na 2 O + H 2 O → NaOH;

CaO + H 2 O → Ca(OH) 2 ;

б) Взаимодействие щелочных и щелочноземельных металлов с водой:

Na + H 2 O → H 2 + NaOH;

Ca + H 2 O → H 2 + Ca(OH) 2 ;

в) Вытеснение сильным основанием слабого из соли:

NaOH + CuSO 4 → Cu(OH) 2 ↓ + Na 2 SO 4 ;

Ba(OH) 2 + FeCl 3 → Fe(OH) 3 ↓ + BaCl 2 .

Классификация оснований

а) По количеству гидроксильных групп основания делятся на одно- и многокислотные: ЭОН, Э(ОН) 2 , Э(ОН) 3 , Э(ОН) 4 . Индекс х в формуле основания Э(ОН) х носит название “кислотность” основания.

б) Основания могут быть растворимыми и нерастворимыми в воде. Большинство оснований нерастворимы в воде. Хорошо растворимые в воде основания образуют элементы I A подгруппы - Li, Na, K, Rb, Cs, Fr (щелочные металлы). Они называются щелочами . Кроме того, растворимым основанием является гидрат аммиака NH 3 ·H 2 O, или гидроксид аммония NH 4 OH, но он не относится к щелочам. Меньшей растворимостью обладают гидроксиды Ca, Sr, Ba (щелочноземельных металлов), причем растворимость их увеличивается по группе сверху вниз: Ba(OH) 2 - наиболее растворимое основание.

в) По способности диссоциировать в растворе на ионы основания делятся на сильные и слабые . Сильными основаниями являются гидроксиды щелочных и щелочноземельных металлов - они диссоциируют на ионы полностью. Остальные основания являются основаниями средней силы или слабыми. Гидрат аммиака также является слабым основанием.

Химические свойства оснований

Основания взаимодействуют с соединениями, проявляющими кислотные свойства:

а) Взаимодействуют с кислотами с образованием соли и воды. Эта реакция называется реакцией нейтрализации:

Ca(OH) 2 + H 2 SO 4 → CaSO 4 + H 2 O;

б) Взаимодействуют с кислотными или амфотерными оксидами (эти реакции также можно отнести к реакциям нейтрализации или кислотно-основного взаимодействия):

Cu(OH) 2 + SO 2 → H 2 O + CuSO 4 ;

NaOH + ZnO → Na 2 ZnO 2 + H 2 O;

в) Взаимодействуют с кислыми солями (кислые соли содержат атом водорода в анионе кислоты);

Ca(OH) 2 + Ca(HCO 3) 2 → CaCO 3 + H 2 O;

NaOH + Ca(HSO 4) 2 → CaSO 4 + Na 2 SO 4 + H 2 O;

г) Сильные основания могут вытеснять слабые из солей:

NaOH + MnCl 2 → Mn(OH) 2 ↓ + NaCl;

Ba(OH) 2 + Mg(NO 3) 2 → Mg(OH) 2 ↓ + Ba(NO 3) 2 ;

д) нерастворимые в воде основания при нагревании разлагаются на оксид и воду.

Основания, амфотерные гидроксиды

Основания - это сложные вещества, состоя­щие из атомов металла и одной или нескольких гидроксогрупп (-OH). Общая формула Me +y (OH) y , где у - число гидроксогрупп, равное степени окисления металла Me. В таблице представлена классификация осно­ваний.


Свойства щелочей гидроксидов щелочных и щелочноземельных металлов

1. Водные растворы щелочей мылкие на ощупь, изменяют окраску индикаторов: лакмуса - в синий цвет, фенолфталеина - в малиновый.

2. Водные растворы диссоциируют:

3. Взаимодействуют с кислотами, вступая в реак­цию обмена:

Многокислотные основания могут давать сред­ние и основные соли:

4. Взаимодействуют с кислотными оксидами, об­разуя средние и кислые соли в зависимости от основности кислоты, соответствующей этому оксиду:

5. Взаимодействуют с амфотерными оксидами и гидроксидами:

а) сплавление:

б) в растворах:

6. Взаимодействуют с растворимыми в воде соля­ми, если образуется осадок или газ:

Нерастворимые основания (Cr(OH) 2 , Mn(OH) 2 и др.) взаимодействуют с кислотами и разлага­ются при нагревании:

Амфотерные гидроксиды

Амфотерными называют соединения, которые в зависимости от условий могут быть как доно­рами катионов водорода и проявлять кислотные свойства, так и их акцепторами, т. е. проявлять основные свойства.

Химические свойства амфотерных соединений

1. Взаимодействуя с сильными кислотами, они об­наруживают основные свойства:

Zn(OH) 2 + 2HCl = ZnCl 2 + 2H 2 O

2. Взаимодействуя со щелочами - сильными ос­нованиями, они обнаруживают кислотные свой­ства:

Zn(OH) 2 + 2NaOH = Na 2 ( комплексная соль)

Al(OH) 3 + NaOH = Na ( комплексная соль)

Комплексными называют соединения, в кото­рых хотя бы одна ковалентная связь образовалась по донорно-акцепторному механизму.


Общий метод получения оснований бази­руется на реакциях обмена, с помощью которых могут быть полу­чены как нерастворимые, так и растворимые основания.

CuSО 4 + 2КОН = Cu(OH) 2 ↓ + K 2 SО 4

К 2 СО 3 + Ва(ОН) 2 = 2 КОН + BaCO 3 ↓

При получении этим методом растворимых оснований в осадок выпадает нерастворимая соль.

При получении нерастворимых в воде оснований, обладающих ам­фотерными свойствами, следует избегать избытка щелочи, так как может произойти растворение амфотерного основания, например:

АlСl 3 + 4КОН = К[Аl(ОН) 4 ] + 3КСl

В подобных случаях для получения гидроксидов используют гид­роксид аммония, в котором амфотерные гидроксиды не растворяются:

АlСl 3 + 3NH 3 + ЗН 2 О = Аl(ОН) 3 ↓ + 3NH 4 Cl

Гидроксиды серебра и ртути настолько легко разлагаются, что при попытке их получения обменной реакцией вместо гидроксидов выпадают оксиды:

2AgNО 3 + 2КОН = Ag 2 О↓ + Н 2 О + 2KNO 3

В промышленности щелочи обычно получают электролизом вод­ных растворов хлоридов.

2NaCl + 2Н 2 О → ϟ → 2NaOH + H 2 + Cl 2

Щелочи можно также получить взаимодействием щелочных и щелочноземельных металлов или их оксидов с водой.

2Li + 2Н 2 О = 2LiOH + Н 2

SrO + Н 2 О = Sr(OH) 2


Кислоты

Кислотами называются сложные вещества, мо­лекулы которых состоят из атомов водорода, спо­собных замещаться на атомы металла, и кислот­ных остатков. При обычных условиях кислоты могут быть тверды­ми (фосфорная H 3 PO 4 ; крем­ниевая H 2 SiO 3) и жидкими (в чистом виде жидкостью будет серная кислота H 2 SO 4).

Такие газы, как хлороводород HCl, бромоводо­род HBr, сероводород H 2 S, в водных растворах об­разуют соответствующие кислоты. Числом ионов водорода, образуемых каждой молекулой кислоты при диссоциации, определяет­ся заряд кислотного остатка (аниона) и основность кислоты.

Согласно протолитической теории кислот и оснований, предло­женной одновременно датским химиком Брёнстедом и английским химиком Лоури, кислотой называют вещество, отщепляющее при данной реакции протоны, а основанием - вещество, способное при­нимать протоны.

кислота → основание + Н +

На основе таких представлений понятны основные свойства ам­миака, который благодаря наличию неподеленной электронной пары при атоме азота эффективно принимает протон при взаимо­действии с кислотами, образуя ион аммония посредством донорно­акцепторной связи.

HNO 3 + NH 3 ⇆ NH 4 + + NO 3 —

кислота основание кислота основание

Более общее определение кислот и оснований предложил амери­канский химик Г. Льюис. Он предположил, что кислотно-основные взаимодействия совсем не обязательно происходят с переносом про тона. В определении кислот и оснований по Льюису основная роль в химических реакциях отводится электронным парам.

Катионы, анионы или нейтральные молекулы, способные принять одну или несколько пар электронов, называют кислотами Льюиса.

Так, например, фторид алюминия AlF 3 - это кислота, так как он способен принимать электронную пару при взаимодействии с аммиаком.

AlF 3 + :NH 3 ⇆ :

Катионы, анионы или нейтральные молекулы, способные отда­вать электронные пары, называют основаниями Льюиса (аммиак - основание).

Определение Льюиса охватывает все кислотно-основные про­цессы, которые рассматривались ранее предложенными теориями. В таблице сопоставлены определения кислот и оснований, ис­пользуемые в настоящее время.

Номенклатура кислот

Поскольку существуют разные определения кислот, их классификация и номенклатура до­вольно условны.

По числу атомов водорода, способных к отщеплению в водном растворе, кислоты делят на одноосновные (например, HF, HNO 2), двухосновные (H 2 CO 3 , H 2 SO 4) и трехосновные (Н 3 РO 4).

По составу кислоты делят на бескислородные (НСl, H 2 S) и кисло­родсодержащие (НСlO 4 , HNO 3).

Обычно названия кислородсодержащих кислот производятся от названия неметалла с прибавлением окончаний -кая, -вая, если сте­пень окисления неметалла равна номеру группы. По мере понижения степени окисления суффиксы меняются (в порядке уменьшения сте­пени окисления металла): -оватая, истая, -оватистая:




Если рассмотреть полярность связи водород-неметалл в пределах периода, легко можно связать полярность этой связи с положени­ем элемента в Периодической системе. От атомов металлов, легко теряющих валентные электроны, атомы водорода принимают эти электроны, образуя устойчивую двухэлектронную оболочку типа оболочки атома гелия, и дают ионные гидриды металлов.

В водородных соединениях элементов III-IV групп Периодиче­ской системы бора, алюминия, углерода, кремния образуют кова­лентные, слабополярные связи с атомами водорода, не склонные к диссоциации. Для элементов V-VII групп Периодической системы в пределах периода полярность связи неметалл-водород увеличи­вается с зарядом атома, но распределение зарядов в возникающем диполе иное, чем в водородных соединениях элементов, склонных отдавать электроны. Атомы неметаллов, у которых для завершения электронной оболочки необходимо несколько электронов, оттяги­вают к себе (поляризуют) пару электронов связи тем сильнее, чем больше заряд ядра. Поэтому в рядах СН 4 - NH 3 - Н 2 O - HF или SiH 4 - PH 3 - H 2 S - НСl связи с атомами водорода, оставаясь кова­лентными, приобретают более полярный характер, а атом водорода в диполе связи элемент-водород становится более электроположи­тельным. Если полярные молекулы оказываются в полярном рас­творителе, может происходить процесс электролитической диссо­циации.

Обсудим поведение кислородсодержащих кислот в водных рас­творах. У этих кислот имеется связь Н-О-Э и, естественно, на по­лярность связи Н-О влияет связь О-Э. Поэтому эти кислоты диссо­циируют, как правило, легче, чем вода.

H 2 SO 3 + H 2 O ⇆ H з O + + HSO 3

HNO 3 + H 2 O ⇆ H з O + + NO 3

На нескольких примерах рассмотрим свойства кислородсодержа­щих кислот, образованных элементами, которые способны прояв­лять разную степень окисления. Известно, что хлорноватистая кис­лота НСlO очень слабая, хлористая кислота НСlO 2 также слабая, но сильнее хлорноватистой, хлорноватая кислота НСlO 3 сильная. Хлор­ная кислота НСlO 4 - одна из самых сильных неорганических кислот.


Для диссоциации по кислотному типу (с отщеплением иона Н) необходим разрыв связи О-Н. Как можно объяснить уменьшение прочности этой связи в ряду НСlO - НСlO 2 - НСlO 3 - НСClO 4 ? В этом ряду увеличивается число атомов кислорода, связанных с цен­тральным атомом хлора. Каждый раз, когда образуется новая связь кислорода с хлором, от атома хлора, а следовательно, и от одинар­ной связи О-Cl оттягивается электронная плотность. В результате электронная плотность частично уходит и от связи О-Н, которая из- за этого ослабляется.

Такая закономерность - усиление кислотных свойств с возрас танием степени окисления центрального атома - характерна не только для хлора, но и для других элементов. Например, азотная кис­лота HNO 3 , в которой степень окисления азота +5, более сильная, чем азотистая кислота HNO 2 (степень окисления азота +3); серная кислота H 2 SO 4 (S +6) более сильная, чем сернистая кислота H 2 SO 3 (S +4).

Получение кислот

1. Бескислородные кислоты могут быть полу­чены при непосредственном соединении неметаллов с водородом .

Н 2 + Сl 2 → 2НСl,

H 2 + S ⇆ H 2 S

2. Некоторые кислородсодержащие кислоты могут быть получе­ны взаимодействием кислотных оксидов с водой .

3. Как бескислородные, так и кислородсодержащие кислоты мож­но получить по реакциям обмена между солями и другими кислотами.

BaBr 2 + H 2 SO 4 = BaSO 4 ↓ + 2НВr

CuSO 4 + H 2 S = H 2 SO 4 + CuS↓

FeS + H 2 SO 4(pa зб) = H 2 S+FeSO 4

NaCl (T) + H 2 SO 4(конц) = HCl + NaHSO 4

AgNO 3 + HCl = AgCl↓ + HNO 3

CaCO 3 + 2HBr = CaBr 2 + CO 2 + H 2 O

4. Некоторые кислоты могут быть получены с помощью окислительно-восстановительных реакций.

Н 2 O 2 + SO 2 = H 2 SO 4

3Р + 5HNO 3 + 2Н 2 O = ЗН 3 РO 4 + 5NO 2

Кислый вкус, действие на индикаторы, элек­трическая проводимость, взаимодействие с метал­лами, основными и амфотерными оксидами, осно­ваниями и солями, образование сложных эфиров со спиртами - эти свойства являются общими для неорганических и органических кислот.

можно разделить на два типа ре­акций:

1) общие для кислот реакции связаны с образованием в водных рас­творах иона гидроксония Н 3 O + ;

2) специфические (т. е. характерные) реакции конкретных кислот.

Ион водорода может вступать в окислителъно-восстановительные реакции, восстанавливаясь до водорода, а также в реакции соединения с отрицательно заряженными или нейтральными ча­стицами, имеющими неподеленные пары электронов, т. е. в кис­лотно-основные реакции.

К общим свойствам кислот относятся реакции кислот с металла­ми, стоящими в ряду напряжений до водорода, например:

Zn + 2Н + = Zn 2+ + Н 2

К кислотно-основным реакциям относятся реакции с основными оксидами и основаниями, а также со средними, основными, а ино­гда и кислыми солями.

2 CO 3 + 4HBr = 2CuBr 2 + CO 2 + 3Н 2 O

Mg(HCO 3) 2 + 2НСl = MgCl 2 + 2СO 2 + 2Н 2 O

2KHSO 3 + H 2 SO 4 = K 2 SO 4 + 2SO 2 + 2H 2 O

Заметим, что многоосновные кислоты диссоциируют ступенчато, причем на каждой следующей ступени диссоциация проходит труд­нее, поэтому при избытке кислоты чаще всего образуются кислые соли, а не средние.

Са 3 (РO 4) 2 + 4Н 3 РO 4 = 3Са(Н 2 РO 4) 2

Na 2 S + Н 3 РО 4 = Na 2 HPO 4 + H 2 S

NaOH + H 3 PO 4 = NaH 2 PO 4 + Н 2 O

КОН + H 2 S = KHS + Н 2 O

На первый взгляд, может показаться удивительным образование кислых солей одноосновной фтороводородной (плавиковой) кислотой. Однако этот факт можно объяснить. В отличие от всех других галогеноводород­ных кислот плавиковая кислота в растворах частично полимеризована (благодаря образованию водородных связей) и в ней могут при­сутствовать разные частицы (HF) X , а именно H 2 F 2 , H 3 F 3 и т. д.

Частный случай кислотно-основного равновесия - реакции кис­лот и оснований с индикаторами, которые изменяют свою окраску в зависимости от кислотности раствора. Индикаторы использу­ются в качественном анализе для обнаружения кислот и основа­ний в растворах.

Самые часто применяемые индикаторы - лакмус нейтральной среде фиолетовый цвет, в кислой - красный, в щелочной - си­ний), метилоранж кислой среде красный, в нейтральной - оран­жевый, в щелочной - желтый), фенолфталеин сильнощелочной среде малиново-красный, в нейтральной и кислой - бесцветный).

Специфические свойства различных кислот могут быть двух типов: во-первых, реакции, приводящие к образованию нерастворимых солей, и, во-вторых, окислительно-восстановительные превращения. Если реакции, связанные с наличием у них иона Н + , общие для всех кислот (качественные реакции для обнаружения кислот), специфические реакции используются как качественные на отдельные кислоты:

Ag + + Cl — = AgCl (белый осадок)

Ва 2+ + SO 4 2- = BaSO 4(белый осадок)

3Ag + + PO 4 3 — = Ag 3 PO 4(желтый осадок)

Некоторые специфические реакции кислот обусловлены их окис­лительно-восстановительными свойствами.

Бескислородные кислоты в водном растворе могут только окисляться.

2КМnO 4 + 16НСl = 5Сl 2 + 2КСl + 2МnСl 2 + 8Н 2 O

H 2 S + Вг 2 = S + 2НВг

Кислородсодержащие кислоты могут окисляться только в том случае, если центральный атом в них находится в низшей или про­межуточной степени окисления, как, например, в сернистой кисло­те:

H 2 SO 3 + Сl 2 + Н 2 O = H 2 SO 4 + 2НСl

Многие кислородсодержащие кислоты, в которых центральный атом имеет максимальную степень окисления (S +6 , N +5 , Сг +6), прояв­ляют свойства сильных окислителей. Концентрированная H 2 SO 4 - сильный окислитель.

Сu + 2H 2 SO 4(конц) = CuSO 4 + SO 2 + 2Н 2 O

Pb + 4HNO 3 = Pb(NO 3) 2 + 2NO 2 + 2H 2 O

C + 2H 2 SO 4(конц) = CO 2 + 2SO 2 + 2H 2 O

Следует запомнить, что:

  • Растворы кислот реагируют с металлами, стоящими в электрохимическом ряду напряже­ний левее водорода, при соблюдении ряда усло­вий, важнейшим из которых является образование в результате реакции растворимой соли. Взаимо­действие HNO 3 и Н 2 SO 4 (конц.) с металлами проте­кает иначе.

Концентрированная серная кислота на холоде пассивирует алюминий, железо, хром.

  • В воде кислоты диссоциируют на катионы водорода и анионы кислотных остатков, например:


  • Неорганические и органические кислоты взаимодействуют с основными и амфотерными оксидами при условии, что образуется раствори­мая соль:
  • И те, и другие кислоты вступают в реакцию с основаниями. Многоосновные кислоты могут об­разовывать как средние, так и кислые соли (это реакции нейтрализации):

  • Реакция между кислотами и солями идет только в том случае, если образуется осадок или газ:


Взаимодействие H 3 PO 4 с известняком прекра­тится из-за образования на поверхности последнего нерастворимого осадка Ca 3 (PO 4) 2 .

Особенности свойств азотной HNO 3 и концен­трированной серной H 2 SO 4 (конц.) кислот обуслов­лены тем, что при их взаимодействии с простыми веществами (металлами и неметаллами) окислите­лями будут выступать не катионы H + , а нитрат- и сульфат-ионы. Логично ожидать, что в резуль­тате таких реакций образуется не водород H 2 , а получаются другие вещества: обязательно соль и вода, а также один из продуктов восстановле­ния нитрат- или сульфат-ионов в зависимости от концентрации кислот, положения металла в ряду напряжений и условий реакции (температуры, сте­пени измельченности металла и т. д.).

Эти особенности химического поведения HNO 3 и H 2 SO 4 (конц.) наглядно иллюстрируют тезис те­ории химического строения о взаимном влиянии атомов в молекулах веществ.


Часто путают понятия летучесть и устойчи­вость (стабильность). Летучими называют кисло­ты, молекулы которых легко переходят в газо­образное состояние, то есть испаряются. Например, соляная кислота является летучей, но устойчивой, стабильной кислотой. О летучести нестабильных кислот судить нельзя. На­пример, нелетучая, нераство­римая кремниевая кислота разлагается на воду и SiO 2 . Водные растворы соляной, азотной, серной, фосфорной и ряда других кислот не име­ют окраски. Водный раствор хромовой кислоты H 2 CrO 4 имеет желтую окраску, марганцевой кислоты HMnO 4 - малиновую.

Справочный материал для прохождения тестирования:

Таблица Менделеева

Таблица растворимости