Несобственные интегралы. Признаки сходимости несобственных интегралов от неотрицательных функций Определение и основные свойства

1. Несобственные интегралы с бесконечными пределами

Вспомним определение интеграла как предела интегральных сумм:

В определении предполагается, что интервал интегрирования конечен, а функция f (x) непрерывна в нем. Нарушение этих предположений приводит к несобственным интегралам.

Определение. Если интеграл стремится к конечному пределу при неограниченном возрастании “b” , то этот предел называют несобственным интегралом с бесконечной верхней границей от функции f (x) и обозначают символом

В этом случае говорят, что несобственный интеграл существует или сходится.

Если указанный предел не существует или существует, но бесконечен, то говорят, что интеграл не существует или расходится.

Аналогично определяется несобственный интеграл с бесконечной нижней границей:

Несобственный интеграл с двумя бесконечными границами определяется формулой:

где с - любая фиксированная точка на оси Ох.

Итак, несобственные интегралы могут быть с бесконечно нижней границей, с бесконечно верхней границей, а также с двумя бесконечными границами.

Признаки сходимости. Абсолютная и условная сходимость

Интеграл существует только тогда, когда существует каждый из интегралов: и .

Пример. Исследовать на сходимость интеграл

Полагая с = 0, получим:

т.е. интеграл сходится.

Иногда нет необходимости вычислять несобственный интеграл, а достаточно лишь знать, сходится он или расходится, сравнив его с другим интегралом.

Теорема сравнения несобственных интегралов.

Пусть в интервале функция f (x) имеет несколько (конечное число) точек разрыва первого рода, это “препятствие” легко устранить, разбив отрезок точками разрыва на несколько отрезков, вычислить определенные интегралы на каждом отдельном участке и результаты сложить.

Рассмотрим определенный интеграл от функции, неограниченной при приближении к одному из концов отрезка , например, .

(В таких случаях обычно говорят: ’’Функция имеет бесконечный разрыв на правом конце отрезка интегрирования’’.)

Ясно, что обычное определение интеграла здесь теряет свой смысл.

Определение . Несобственным интегралом от функции f(x), непрерывной при а £ х < b и неограниченной при x ® b - 0, называется предел:

Аналогично определяется несобственный интеграл от функции, имеющей бесконечный разрыв на левом конце отрезка:

Следовательно, на участке [ -1, 0] интеграл расходится.

Значит на участке интеграл также расходится.

Таким образом, данный интеграл расходится на всем отрезке [-1, 1]. Отметим, что если бы мы стали вычислять данный интеграл, не обращая внимания на разрыв подынтегральной функции в точке x = 0, то получили бы неверный результат. Действительно,

, что невозможно.

Итак, для исследования несобственного интеграла от разрывной функции, необходимо "разбить" его на несколько интегралов и исследовать их.

Как известно, нахождение интеграла может представлять собой достаточно сложную задачу. Было бы большим разочарованием заняться вычислением несобственного интеграла и обнаружить в конце пути, что он расходится. Поэтому представляют интерес методы, позволяющие без серьезных вычислений по одному виду функций сделать заключение о сходимости или расходимости несобственного интеграла. Первая и вторая теоремы сравнения, которые будут рассмотрены ниже, в значительной степени помогают исследовать несобственные интегралы на сходимость.

Пусть f(x)?0. Тогда функции

являются монотонно возрастающими от переменных t или-д (поскольку берем д>0, -д стремится к нулю слева). Если при возрастании аргументов функции F 1 (t) и F 2 (-д) остаются ограниченными сверху, это означает, что соответствующие несобственные интегралы сходятся. На этом основана первая теорема сравнения для интегралов от неотрицательных функций.

Пусть для функции f(x)и g(x) при x?a выполнены условия:

  • 1) 0?f(x)?g(x);
  • 2) Функции f(x) и g(x)непрерывны.

Тогда из сходимости интеграла следует сходимость интеграла, а из расходимости интеграла следует расходимость

Поскольку 0?f(x)?g(x) и функции непрерывны, то

По условию интеграл сходится, т.е. имеет конечную величину. Следовательно, интеграл сходится также.

Пусть теперь интеграл расходится. Предположим, что интеграл сходится, но тогда должен сходиться интеграл, что противоречит условию. Наше предположение неверно, интеграл расходится.

Теорема сравнения для несобственных интегралов 2-го рода.

Пусть для функций f(x) и g(x) на промежутке , неограниченно возрастает при x>+0. Для нее при x>+0 справедливо неравенство <. Несобственный интеграл есть эталонный интеграл 2-го рода, который при p=<1 сходится; следовательно, по 1-й теореме сравнения для несобственных интегралов 2-го рода интеграл сходится также.

Теорема сравнения для несобственных интегралов 1-го рода.

Пусть для функции f(x) и g(x) на промежутке $, оба этих числа ниже полагаются конечными. Если имеется всего 1 разрыв, он может находиться или в точке $a$, или в точке $b$, или внутри интервала $(a,\,b)$. Рассмотрим сначала случай, когда разрыв второго рода имеется в точке $a$, а в остальных точках подинтегральная функция непрерывна. Итак, мы обсуждаем интеграл

\begin{equation} I=\int _a^b f(x)\,dx, (22) \label{intr2} \end{equation}

причем $f(x) \rightarrow \infty $, когда $x \rightarrow a+0$. Как и ранее, прежде всего следует придать смысл этому выражению. Для этого рассмотрим интеграл

\[ I(\epsilon)=\int _{a+\epsilon}^b f(x)\,dx. \]

Определение. Пусть существует конечный предел

\[ A=\lim _{\epsilon \rightarrow +0}I(\epsilon)=\lim _{\epsilon \rightarrow +0}\int _{a+\epsilon}^b f(x)\,dx. \]

Тогда говорят, что несобственный интеграл второго рода (22) сходится, и ему приписывают значение $A$, саму функцию $f(x)$ называют интегрируемой на интервале $\left[ a, \, b\right]$.

Рассмотрим интеграл

\[ I=\int ^1_0\frac{dx}{\sqrt{x}}. \]

Подинтегральная функция $1/\sqrt{x}$ при $x \rightarrow +0$ имеет бесконечный предел, так что в точке $x=0$ она имеет разрыв второго рода. Положим

\[ I(\epsilon)=\int ^1_{\epsilon }\frac{dx}{\sqrt{x}}\,. \]

В данном случае первообразная известна,

\[ I(\epsilon)=\int ^1_{\epsilon }\frac{dx}{\sqrt{x}}=2\sqrt{x}|^1_{\epsilon }=2(1-\sqrt{\epsilon })\rightarrow 2 \]

при $\epsilon \rightarrow +0$. Таким образом, исходный интеграл является сходящимся несобственным интегралом второго рода, причем он равен 2.

Рассмотрим вариант, когда разрыв второго рода подинтегральной функции имеется на верхнем пределе интервала интегрирования. Этот случай можно свести к предыдущему, сделав замену переменной $x=-t$ и затем переставив пределы интегрирования.

Рассмотрим вариант, когда разрыв второго рода у подинтегральной функции имеется внутри интервала интегрирования, в точке $c \in (a,\,b)$. В данном случае исходный интеграл

\begin{equation} I=\int _a^bf(x)\,dx (23) \label{intr3} \end{equation}

представляют в виде суммы

\[ I=I_1+I_2, \quad I_1=\int _a^cf(x)\,dx +\int _c^df(x)\,dx. \]

Определение. Если оба интеграла $I_1, \, I_2$ сходятся, то несобственный интеграл (23) называют сходящимся и ему приписывают значение, равное сумме интегралов $I_1, \, I_2$, функцию $f(x)$ называют интегрируемой на интервале $\left[ a, \, b\right]$. Если хотя бы один из интегралов $I_1,\, I_2$ является расходящимся, несобственный интеграл (23) называют расходящимся.

Сходящиеся несобственные интегралы 2 рода обладают всеми стандартными свойствами обычных определенных интегралов.

1. Если $f(x)$, $g(x)$ интегрируемы на интервале $\left[ a, \,b \right ]$, то их сумма $f(x)+g(x)$ также интегрируема на этом интервале, причем \[ \int _a^{b}\left(f(x)+g(x)\right)dx=\int _a^{b}f(x)dx+\int _a^{b}g(x)dx. \] 2. Если $f(x)$ интегрируема на интервале $\left[ a, \, b \right ]$, то для любой константы $C$ функция $C\cdot f(x)$ также интегрируема на этом интервале, причем \[ \int _a^{b}C\cdot f(x)dx=C \cdot \int _a^{b}f(x)dx. \] 3. Если $f(x)$ интегрируема на интервале $\left[ a, \, b \right ]$, причем на этом интервале $f(x)>0$, то \[ \int _a^{b} f(x)dx\,>\,0. \] 4. Если $f(x)$ интегрируема на интервале $\left[ a, \, b \right ]$, то для любого $c\in (a, \,b)$ интегралы \[ \int _a^{c} f(x)dx, \quad \int _c^{b} f(x)dx \] тоже сходятся, причем \[ \int _a^{b}f(x)dx=\int _a^{c} f(x)dx+\int _c^{b} f(x)dx \] (аддитивность интеграла по интервалу).

Рассмотрим интеграл

\begin{equation} I=\int _0^{1}\frac{1}{x^k}\,dx. (24) \label{mod2} \end{equation}

Если $k>0$, подинтегральная функция стремится к $\infty$ при $x \rightarrow +0$, так что интеграл - несобственный второго рода. Введем функцию

\[ I(\epsilon)=\int _{\epsilon}^{1}\frac{1}{x^k}\,dx. \]

В данном случае первообразная известна, так что

\[ I(\epsilon)=\int _{\epsilon}^{1}\frac{1}{x^k}\,dx\,=\frac{x^{1-k}}{1-k}|_{\epsilon}^1= \frac{1}{1-k}-\frac{\epsilon ^{1-k}}{1-k}. \]

при $k \neq 1$,

\[ I(\epsilon)=\int _{\epsilon}^{1}\frac{1}{x}\,dx\,=lnx|_{\epsilon}^1= -ln \epsilon. \]

при $k = 1$. Рассматривая поведение при $\epsilon \rightarrow +0$, приходим к выводу, что интеграл (20) сходится при $k

10.2.2 Признаки сходимости несобственных интегралов 2 рода

Теорема (первый признак сравнения). Пусть $f(x)$, $g(x)$ - непрерывны при $x\in (a,\,b)$, причем $0 1. Если интеграл \[ \int _a^{b}g(x)dx \] сходится, то сходится и интеграл \[ \int _a^{b}f(x)dx. \] 2. Если интеграл \[ \int _a^{b}f(x)dx \] расходится, то расходится и интеграл \[ \int _a^{b}g(x)dx. \]

Теорема (второй признак сравнения). Пусть $f(x)$, $g(x)$ - непрерывны и положительны при $x\in (a,\,b)$, причем существует конечный предел

\[ \theta = \lim_{x \rightarrow a+0} \frac{f(x)}{g(x)}, \quad \theta \neq 0, \, +\infty. \]

Тогда интегралы

\[ \int _a^{b}f(x)dx, \quad \int _a^{b}g(x)dx \]

сходятся или расходятся одновременно.

Рассмотрим интеграл

\[ I=\int _0^{1}\frac{1}{x+\sin x}\,dx. \]

Подинтегральное выражение - положительная функция на интервале интегрирования, подинтегральная функция стремится к $\infty$ при $x \rightarrow +0$, так что наш интеграл - несобственный второго рода. Далее, при $x \rightarrow +0$ имеем: если $g(x)=1/x$, то

\[ \lim _{x \rightarrow +0}\frac{f(x)}{g(x)}=\lim _{x \rightarrow +0}\frac{x}{x+\sin x}=\frac{1}{2} \neq 0,\, \infty \, . \]

Применяя второй признак сравнения, приходим к выводу, что наш интеграл сходится или расходится одновременно с интегралом

\[ \int _0^{+1}\frac{1}{x}\,dx . \]

Как было показано в предыдущем примере, этот интеграл расходится ($k=1$). Следовательно, исходный интеграл тоже расходится.

Вычислить несобственный интеграл или установить его сходимость (расходимость).

1. \[ \int _{0}^{1}\frac{dx}{x^3-5x^2}\,. \] 2. \[ \int _{3}^{7}\frac{x\,dx}{(x-5)^2}\,. \] 3. \[ \int _{0}^{1}\frac{x\,dx}{\sqrt{1-x^2}}\,. \] 4. \[ \int _{0}^{1}\frac{x^3\,dx}{1-x^5}\,. \] 5. \[ \int _{-3}^{2}\frac{dx}{(x+3)^2}\,. \] 6. \[ \int _{1}^{2}\frac{x^2\,dx}{(x-1)\sqrt{x-1}}\,. \] 7. \[ \int _{0}^{1}\frac{dx}{\sqrt{x+x^2}}\,. \] 8. \[ \int _{0}^{1/4}\frac{dx}{\sqrt{x-x^2}}\,. \] 9. \[ \int _{1}^{2}\frac{dx}{xlnx}\,. \] 10. \[ \int _{1}^{2}\frac{x^3\,dx}{\sqrt{4-x^2}}\,. \] 11. \[ \int _{0}^{\pi /4}\frac{dx}{\sin ^4x}\,. \]