Биологические пруды для очистки сточных вод. Технология возведения пруда

Аэробные процессы биохимической очистки могут протекать в природных условиях и в искусственных сооружениях. В естественных условиях очистка происходит на полях орошения, полях фильтрации и биологических прудах. Искусственными сооружениями являются аэротенки и биофильтры разной конструкции. Тип сооружений выбирают с учетом местоположения завода, климатических условий, источника водоснабжения, объема промышленных и бытовых сточных вод, состава и концентрации загрязнений. В искусственных сооружениях процессы очистки протекают с большей скоростью, чем в естественных условиях.

Поля орошения

Это специально подготовленные земельные участки, используемые одновременно для очищения сточных вод и агрокультурных целей. Очистка сточных вод в этих условиях идет под действием почвенной микрофлоры, солнца, воздуха и под влиянием жизнедеятельности растений.

Земледельческие поля орошения имеют следующие преимущества перед аэротенками:

  • 1) снижаются капитальные и эксплуатационные затраты;
  • 2) исключается сброс стоков за пределы орошаемой площади;
  • 3) обеспечивается получение высоких и устойчивых урожаев сельскохозяйственных растений;
  • 4) вовлекаются в сельскохозяйственный оборот мало продуктивные земли.

В процессе биологической очистки сточные воды проходят через фильтрующий слой почвы, в котором задерживаются взвешенные и коллоидные частицы, образуя в порах грунта микробиальную пленку. Затем образовавшаяся пленка адсорбирует коллоидные частицы и растворенные в сточных водах вещества. Проникающий из воздуха в поры кислород окисляет органические вещества, превращая их в минеральные соединения. В глубокие слои почвы проникание кислорода затруднено, поэтому наиболее интенсивное окисление происходит в верхних слоях почвы (0,2-0,4 м). При недостатке кислорода в прудах начинают преобладать анаэробные процессы.

Поля орошения лучше устраивать на песчаных, суглинистых и черноземных почвах. Грунтовые воды должны быть не выше 1,25 м от поверхности. Если грунтовые поды залегают выше этого уровня, то необходимо устраивать дренаж.

[принимают равными 5-20 м 3 (га*сут)]

B зимнее время сточную воду направляют только на резервные поля фильтрации. Так как в этот период фильтрация сточной воды или прекращается полностью или замедляется, то резервное поле фильтрации проектируют с учетом площади намораживания Fн (в м 2):

где Q - расход сточных вод, м 3 /сут; Tн - число дней намораживания; ? - коэффициент, характеризующий величину зимней фильтрации; hн и hо - высоты слоев соответственно намораживания и зимних осадков, м; ?л - плотность льда, кг/м 3 .

Биологические пруды

Представляют собой каскад прудов, состоящий из 3-5 ступеней, через которые с небольшой скоростью протекает осветленная или биологически очищенная сточная вода.

Пруды предназначены для биологической очистки и для доочистки сточных вод в комплексе с другими очистными сооружениями. Различают пруды с естественной или искусственной аэрацией.

Пруды с естественной аэрацией имеют небольшую глубину (0,5-1 м), хорошо прогреваются солнцем и заселены водными организмами.

К атегория: Очистка сточных вод

Биологическая очистка сточных вод в естественных условиях

Биологическая очистка сточных вод в естественных условиях может осуществляться в биологических прудах, на полях фильтрации и сооружениях подземной фильтрации, а также на земледельческих полях орошения.

Биологические пруды - искусственно созданные неглубокие водоемы, в которых происходит биологическая очистка сточных вод на слабо фильтрующих грунтах, основанная на процессах, протекающих при самоочищении водоемов. Биологические пруды можно также использовать для доочистки сточных вод после их прохождения через другие сооружения для биологической очистки. Пруды бывают одиночные (мелкие непроточные глубиной 0,6-1,2 м) или состоящие из трех - пяти прудов, через которые медленно протекает осветленная или биологически очищенная на биофильтрах сточная жидкость.

Для очистки сточных вод в IV климатическом районе биологические пруды можно применять круглый год, во II и III климатических районах - только в теплый сезон, а в холодный сезон при условии, что вода в биопрудах имеет температуру не ниже 8°С.

Очистка сточных вод в биологических прудах может происходить в анаэробных и аэробных условиях. Анаэробные пруды имеют глубину 2,5-3 м, нагрузка по БПК для бытовых сточных вод составляет 300-350 кг/ /(га-сут). Аэробные биопруды с естественной аэрацией можно использовать для очистки сточных вод с концентрацией по БПК.5 не выше 200-250 мг/л в IV климатической зоне круглогодично, а во II и III климатических зонах - только в теплый период. Расчетная нагрузка на пруды для отстоенных сточных вод принимается до 250 м3/(га-сут), для биологически очищенных вод - до 5000 м3/(га-сут). При площади пруда 0,5-0,25 га время пребывания сточных вод в зависимости от нагрузки колеблется от 2,5 до 10 сут.

Бнопруды для полной очистки целесообразно осуществлять в две - три ступени, принимая в каждой из ступеней степень очистки по БПК.5 равной 70 %. Для интенсификации процесса очистки сточных вод в биопруды искусственным путем подается кислород воздуха. Такие биопруды занимают значительно меньшую площадь и менее зависят от климатических условий, они могут работать и при температуре воздуха от -15 до - 20 °С, а в отдельные дни и до -45 °С.

Исследования ВНИИ ВОДГЕО, МИСИ им. В. В.Куйбышева и ЦНИИЭП инженерного оборудования, а также результаты производственных испытаний Белорусского научно-исследовательского санитарно-гигиенического института подтвердили целесообразность применения аэрируемых биопрудов для очистки сточных вод в сельской местности пропускной способностью 100-10 000 м3/сут, а для доочистки - до 50 000 м3/сут.

Аэрируемые биопруды можно использовать для очистки сточных вод с концентрацией по БПК5 ДО 500 мг/л, они обеспечивают эффективную очистку сточных вод во II и III климатических зонах. В северных районах II климатической зоны, а также в районах с устойчивыми ветрами в зимнее время года более целесообразно применять биологические пруды с рециркуляционным циклом (возвратом) иловой смеси, имеющие лучшие теплотехнические характеристики. Перед биопрудами следует предусматривать механическую очистку сточных вод. При концентрации взвешенных веществ до 250 мг/л время отстаивания можно принимать равным 0,5 ч, при концентрации 250-500 мг/л-1 ч.

Рис. 1. План станции биологической очистки сточных вод пропускной способностью 700 м3/сут 1, 2, 3, 4- аэрируемые пруды соответственно I, II, III , IV ступени: 5 - пруд-отстойник; 6 - контактный пруд; 7- производственное здание: 8 - всасывающий трубопровод технической воды; 9 - воздуховод; 10 - напорный трубопровод технической воды; 11 - приемная камера; 12 - подводящий трубопровод диаметром 300 мм; 13 - двухъярусный отстойник; 14, 17 - песковые площадки; 15 - пескопровод; 16 - иловые площадки

На строительство очистных сооружений g аэрируемыми биопрудами требуются наименьшие капитальные вложения по сравнению с очисткой другими методами. Удельные затраты на этих станциях на 20-50 % ниже. Кроме того, аэрируемые биопруды характеризуются высоким уровнем механизации земляных работ и минимальным расходом железобетона и других строительных материалов.

Поля фильтрации можно применять в отдельных случаях при наличии непригодных для сельскохозяйственного использования земельных участков с фильтрующими грунтами, при отсутствии опасности загрязнения грунтовых вод, используемых для питьевых нужд. Земельные участки полей фильтрации специально подготовляют для биологической очистки сточных вод, не допуская их использования для агрокультурных целей. Подаваемая на поля сточная вода поступает на отдельные участки (карты) по системе открытых лотков или каналов (разводные каналы); комплекс этих каналов составляет оросительную сеть. Сбор и отвод профильтровавшейся очищенной воды осуществляется с помощью дренажа, который может быть открытым в виде канав по периметру карт или закрытым, состоящим из дренажных труб, уложенных по карте на глубине 1,5-2 м, и канав. Система дренажа и канав образует осушительную систему. Каналы выполняют из кирпича, бута, железобетона, бетона или делают земляными. Каналы имеют прямоугольное или трапецеидальное поперечное сечение; размещают их по ограждающим земляным валкам.

При проектировании полей фильтрации выбирают открытые, не затопляемые весенними водами участки со спокойным рельефом местности с естественным уклоном не более 0,02. Для устройства полей фильтрации не пригодны участки, расположенные близко от мест выклинивания водоносных горизонтов, а также торфяные и глинистые почвы и солончаки. Наиболее пригодны песчаные и супесчаные грунты. Поля рекомендуется располагать с подветренной стороны на определенном расстоянии от жилых массивов в зависимости от расхода сточной воды: при расходе до 5000 м3/сут это расстояние принимают 300 м, при 5000-50 000 м3/сут -500 м и свыше 50 000 м3/сут-1000 м. По контуру полей обычно высаживают иву и другие влаголюбивые насаждения. Ширину полосы насаждений принимают 10-20 м в зависимости от удаленности полей от населенных пунктов.

Бытовые сточные воды, очищенные на полях фильтрации, имеют БПК 10-15 мг/л, стойкость 99% (т.е. не загнивают), содержат нитратов до 25 мг/л. Количество бактерий уменьшается на 99-99,9% по сравнению с содержанием их в исходной воде. Специальная дезинфекция не требуется. Для успешной эксплуатации полей необходимо подавать на них сточную воду, предварительно осветленную, т.е. в значительной степени освобожденную от взвешенных частиц. Кроме того, при отстаивании из сточной жидкости выделяется в осадок до 50--80 % гельминтов, что снижает загрязнение ими почвы в 7-10 раз.

Требуемую площадь для полей фильтрации определяют исходя из нормы нагрузки - допустимого количества сточной воды, которое может быть очищено на 1 га поверхности полей. Кроме того, учитывают характер грунтов, уровень грунтовых вод и среднегодовую температуру по нормам нагрузок. Нормы нагрузки осветленных сточных вод на поля фильтрации для районов со среднегодовым количеством атмосферных осадков 300- 500 мм приведены в СНиП 2.04.03-85.

Для устройства ограждений карт, оросительной сети, дорог и въездов на карты необходимо предусматривать дополнительную площадь. Так, при полезной площади полей фильтрации до 0,3 га дополнительная площадь предусматривается равной 100% полезной площади, при 0,5 га-90, при 0,8-80, при 1 га-60 и более 1 га- 40% полезной площади полей.

При устройстве полей фильтрации обычно предусматривают постоянную и временную оросительные сети. Постоянная оросительная сеть (рис. 2) состоит из магистрального канала, групповых распределительных каналов и картовых оросителей, обслуживающих отдельные карты. Картовын ороситель - последний элемент постоянной сети.

Рис. 2. Схема полей орошения 1 - магистральные и распределительные каналы; 2 - нартовые оросители; 3 - осушительные канавы; 4 - дренаж; 5 - дороги

Оросительную сеть проектируют из керамических или асбестоцементных труб диаметром 75-100 мм. Допускается применение оросительных лотков из кирпича, бетона и других материалов. Укладывают оросительные трубы в песчаных грунтах с уклоном 0,001-0,003, а в супесчаных - горизонтально. Расстояние между параллельными оросительными трубами в песках 1,5-2,0 м, в супесях-2,5 м. Керамические трубы прокладывают с зазорами 15-20 мм; над стыками труб следует предусматривать накладки. В асбестоцементных трубах оросительных сетей снизу делают пропилы на половину диаметра шириной 15 мм. Расстояние между пропилами должно быть не более 2 м. Для притока воздуха на концах оросительных труб устанавливают стояки диаметром 100 мм, возвышающиеся на 0,5 м над поверхностью земли.

Рис. 3. Схема устройства полей подземной фильтрации 1 - выпуск из здания; 2 - трехкамер-ный септик из железобетонных колец; 3 - дозирующая камера с дозирующим сифоном; 4 - распределительная камера; 5 - дрены

Осушительную сеть на полях фильтрации предусматривают при неблагоприятных грунтовых условиях. Она состоит из дренажа, сборной сети, отводящих линий и выпусков. Дренажная система является составной частью полей, так как позволяет своевременно отводить излишнюю влагу почвы и способствует прониканию воздуха в деятельный слой, без которого не может проходить аэробный окислительный процесс. В малопроницаемых грунтах (суглинках) сооружают закрытый дренаж, в проницаемых грунтах (пески, супеси) дренаж или вообще не требуется, или устраивают открытые осушительные канавы.

Расстояние между дренами зависит от степени водопроницаемости грунта, глубины осушаемого слоя, глубины заложения дрен, количества отводимой воды и пр. Для предварительных расчетов расстояние между дренами в песках принимают 16-25 м, в супесях 12-15 м и в легких суглинках 8-10 м. В крупнозернистых песках в некоторых случаях дренаж сооружают в виде открытых осушительных канав с расстоянием между ними до 100 м.

Закрытый дренаж устраивают преимущественно из неглазурованных гончарных труб диаметром 75-100 мм.

Дрены следует располагать перпендикулярно направлению потока грунтовых вод с уклоном 0,0025-0,005. Между трубами оставляют зазоры 4-5 мм. Под стыками укладывают глиняную подушку, сверху стыки перекрывают толем или войлоком. Открытые осушительные канавы, сборные сети и выпуски устраивают в виде каналов трапецеидальной формы с боковыми стенками под углом естественного откоса грунтов.

В зимнее время после промерзания почвы фильтрация сточных вод на полях фильтрации значительно замедляется, а иногда полностью прекращается, и напускаемые на поля сточные воды намораживаются. Поэтому в районах с холодным и умеренным климатом поля фильтрации следует проверять на намораживание. Обычно высоту слоя намораживания сточных вод принимают 0,6-0,8 м, в соответствии с чем определяют высоту валов, ограждающих карту.

Сооружения подземной фильтрации. Для очистки малых количеств сточных вод применяют поля подземной фильтрации. Сточную воду от здания или группы зданий направляют для предварительного осветления в септик (рис. 3). Осветленная вода поступает в сеть уложенных на глубине 0,3-1,2 м трубопроводов с незаделан ными стыками, через которые сточная вода проникает в грунт, где происходит ее дальнейшая очистка. Очищенная сточная вода не собирается в осушительную сеть, а просачивается в толщу грунта или частично уходит с грунтовым потоком.

На территории полей подземной фильтрации допускается выращивание огородных культур. Недостатком полей фильтрации является необходимость устройства широкой зоны санитарного разрыва (200-300 м). Для объектов с расходом сточных вод до 12 м3/сут в отдельных случаях (при наличии фильтрующих грунтов, глубоком залегании грунтовых вод и отсутствии опасности загрязнения водоносных горизонтов, используемых для питьевого водоснабжения) могут быть приняты очистные сооружения, работающие по принципу подземной фильтрации сточных вод (песчано-гравийные фильтры, фильтрующие траншеи, фильтрующие колодцы). Эти сооружения достаточно просты в строительстве и эксплуатации и предназначаются для полной биологической очистки.

Сооружения подземной фильтрации (в отличие от наземных полей фильтрации) могут находиться вблизи обслуживаемых ими зданий и не требуют строительства наружной канализационной сети значительной протяженности. Сточная вода на очистные сооружения поступает самотеком, в связи с чем не требуются станции перекачки. Такие сооружения целесообразно устраивать в песчаных, супесчаных и легких суглинистых грунтах.

Сточную воду от здания или группы зданий направляют для предварительного осветления в септик. Осветленная вода через дозирующую камеру и распределительный колодец поступает в дренажные трубы, расположенные выше уровня грунтовых вод не менее чем на 1 м, или фильтрующий колодец. Через незаделанные стыки и пропилы труб или отверстия в стенках колодца осветленная жидкость попадает в грунт, где происходит ее дальнейшая очистка. При работе систем подземной фильтрации исключается загрязнение воздуха и верхних слоев почвы.

Типовые проекты очистных сооружений систем подземной фильтрации разработаны в соответствии с унифицированным рядом таких сооружений малой производительности 0,5-12 м3/сут. Номенклатура типовых проектов включает: септики; системы с полями подземной фильтрации и фильтрующими колодцами, применяемые в песчаных и супесчаных грунтах; системы с фильтрующими траншеями и песчано-гравийными фильтрами, используемые при суглинистых и глинистых грунтах.

Септик представляет собой подземное сооружение, в котором сточные воды протекают с малой скоростью, при этом взвешенные вещества выпадают в осадок, а жидкость осветляется в течение 1-4 сут. Выпавший осадок в септике подвергается длительному перегниванию (сбраживанию) в течение 6-12 мес под воздействием анаэробных микроорганизмов.

Расчетные объемы септиков следует принимать из условий очистки их не менее 1 раза в год. При средне-зимней температуре сточных вод выше 10°С или при норме водоотведения более 150 л/(чел-сут) полный расчетный объем септика может быть уменьшен на 20%.

При расходе сточных вод до 1 м3/сут предусматривают однокамерные септики, до 10 м3/сут - двухкамерные и свыше 10 м3/сут - трехкамерные. Объем первой камеры в двухкамерных септиках принимают равным 0,75; в трехкамерных-0,5 расчетного объема. В последнем случае объем второй и третьей камер должен составлять по 0,25 расчетного объема. В септиках из бетонных колец все камеры могут быть равного объема. При расходах более 5 м3/сут каждую камеру следует разделять продольной стенкой на два одинаковых отделения. Минимальные размеры септика: глубина (от уровня воды) 1,3, ширина 1, длина или диаметр 1 м. Максимальная глубина септика не более 3,2 м. В септиках должна быть предусмотрена естественная вентиляция. В типовом проекте разработаны септики пропускной способностью 0,5- 0,25 м3/сут (рис. 4).

Песчано-гравийный фильтр представляет собой котлован, в который уложена фильтрующая засыпка. В зависимости от числа слоев засыпки фильтры бывают одно- и двухступенчатые. В одноступенчатых фильтрах применяют крупнозернистый песок слоем 1 -1,5 м, в двухступенчатых фильтрах первая ступень загружается гравием, коксом, гранулированным шлаком слоем 1- 1,5 м, вторая - аналогично одноступенчатому фильтру.

Фильтрующая траншея - конструктивная разновидность песчано-гравийных фильтров - представляет собой рассредоточенные и удлиненные фильтры. Траншеи применяют в тех случаях, когда устройство песчано-гравийных фильтров не допускается из-за близкого расположения грунтовых вод и невозможен их отвод дренажной сетью из-за рельефа местности. Расчетную длину фильтрующих траншей принимают в зависимости от расхода сточных вод и нагрузки на оросительные трубы, но не более 300 м, ширину траншей по низу - не менее 0,5 м.

В фильтрующих траншеях в качестве загрузочного материала используют крупно- и среднезернистый песок и другие крупнозернистые материалы с толщиной слоя (между оросительной и дренажной трубой) 0,8-1 м. Для оросительных труб и отводящих дрен фильтров и траншей применяют трубы минимального диаметра 100 мм, укладывая их в гравийную (или из других крупнозернистых материалов) обсыпку толщиной 5-20 см. Глубина заложения оросительных труб от поверхности земли должна быть не менее 0,5 м. Расстояние между параллельными оросительными трубами и между отводящими дренами в песчано-гравийных фильтрах 1-1,5 м. Уклон оросительных и дренажных труб в фильтрах и траншеях не менее 0,005.

Рис. 5. Очистка сточных вод в септиках и фильтрующих колодцах 1 - канализационный стояк; 2- выпуск из здания; 3 септик; 4 - водоотводная труба; 5 - фильтрующий колодец

Фильтрующие колодцы - предназначены для очистки бытовых сточных вод, поступающих от отдельно стоящих зданий при расчетном расходе не более 1 м3/сут, после предварительной обработки в септике. Их применяют в песчаных и супесчаных грунтах при отсутствии достаточных площадей для размещения полей подземной фильтрации и расположении основания колодца не менее чем на 1 м выше максимального уровня грунтовых вод (рис. 5).

Фильтрующие колодцы круглые по форме выполняют из железобетонных колец диаметром не более 2 м, а прямоугольные - из усиленно обожженного кирпича и бутового камня размером не более 2X2 м в плане и 2,5 м глубиной. Внутри колодца устраивают донный фильтр высотой до 1 м из гравия, щебня, кокса, хорошо спекшегося котельного шлака и других материалов. У наружных стенок и основания колодца выполняют обсыпку из тех же материалов. В стенках колодца ниже подводящей трубы сверлят отверстия для выпуска профильтровавшейся воды. Колодцы перекрывают плитой с люком диаметром 700 мм и оборудуют вентиляционной трубой диаметром 100 мм.

Расчетная фильтрующая площадь поверхности колодца определяется суммой площадей дна и поверхности внутренних стенок колодца на высоту фильтра. Нагрузка на 1 м2 площади фильтрующей поверхности в песчаных грунтах принимается 80 л/сут, а в супесчаных - 40 л/сут. При устройстве фильтрующих колодцев в средне-и крупнозернистых песках или при расстоянии между основанием колодца и уровнем грунтовых вод более 2 м нагрузка увеличивается на 10-20% (последняя цифра принимается при норме водоотведения на 1 человека более 150 л/сут или при среднезимней температуре сточных вод выше 10 °С). Для объектов сезонного действия нагрузка также может быть увеличена на 20%.

Земледельческие поля орошения, устраиваемые на землях колхозов и совхозов, предназначены для круглогодичного приема и обезвреживания сточных вод в процессе их сельскохозяйственного использования. Эти поля имеют невысокие нормы нагрузки на 1 га площади орошения, а также небольшой объем планировочных работ. Круглогодичный прием сточных вод независимо от климатических условий возможен в том случае, если нормы нагрузки не превышают 5-20 м3/сут на 1 га площади орошения. Земледельческие поля орошения располагают на почвах, пригодных для земледелия, или которые можно использовать после надлежащей их подготовки (мелиорации). Естественный уклон земельных участков не должен превышать 0,03 (наиболее приемлем уклон 0,005-0,015).

Городские сточные воды вначале поступают на очистную станцию, где предварительно обрабатываются, т. е. проходят решетку, песколовку и первичные отстойники. В ночное время вода поступает в регулирующие емкости. После отстойников сточная вода самотеком или с помощью насосов подается на командные точки полей.

На территорию полей вода подается по оросительной сети, которая подразделяется:
а) постоянная, подводящая сточную воду к полям севооборота и состоящая из постоянных магистральных и распределительных трубопроводов, укладываемых преимущественно из асбестоцементных труб;
б) временная, состоящая из переносных трубопроводов, временных оросителей, ложбин и водоотводных борозд;
в) поливная, состоящая из борозд, полос и подпочвенных увлажнителей.

Трубопроводы постоянной оросительной сети укладывают с учетом промерзания грунта на пахотных землях на глубине 0,7-1,2 м, а под дорогами и на территории населенных мест-ниже глубины промерзания грунта на 0,1 м до шелыги трубы. Из закрытой постоянной сети вода выпускается специальными водовыпусками. Водовыпускные колодцы в зависимости от рельефа местности и расположения поливных участков при одностороннем распределении размещают на расстоянии 100-200, при двустороннем -200-300 м.

Увлажнительно-удобрительные нормы орошения сточными водами на земледельческих полях орошения устанавливают в зависимости от состава культур и насаждений, потребности их в минеральной пище и воде, санитарно-гигиенических требований, связанных с обезвреживанием сточных вод. Расчетный расход воды составляет 5-20 м3/сут на 1 га или 1800- 7300 м3/год.



- Биологическая очистка сточных вод в естественных условиях

Биологические пруды представляют собой искусственно созданные водоемы для биологической очистки сточных вод, основанной на процессах, которые происходят при самоочищении водоемов

При отсутствии хорошо фильтрующих почв для устройства полей фильтрации или полей орошения пруды могут быть использованы как самостоятельные сооружения для очистки сточных вод, а также для их доочистки в сочетании с другими очистными сооружениями.

Пруды делают небольшой глубины - от 0,5 до 1 м. Это позволяет создать значительную поверхность соприкосновения воды с воздухом и обеспечить прогрев всей толщи воды и хорошее ее перемешивание. Таким образом, создаются благоприятные условия для массового развития водных организмов, в частности планктонных водорослей, которые ассимилируют биогенные элементы и в результате процесса синтеза обогащают воду кислородом, необходимым при окислении органических веществ.

Биологические пруды обеспечивают более высокий эффект бактериального самоочищения, чем сооружения искусственной биологической очистки. Так, число кишечных палочек в прудах снижается ш. 95,9- 99,9% начального содержания. Содержание яиц гельминтов в воде, прошедшей биологические пруды, ничтожно мало.

Напуск сточной воды и отвод очищенных вод из прудов производится рассредоточенно.

Для возможности полного опорожнения прудов дну их должен быть придан небольшой уклон по направлению к водосливным сооружениям.

Нормальная эксплуатация прудов происходит в теплое время, и уже при температуре воды ниже 6° С резко ухудшается.

При дальнейшем понижении температуры и особенно после образования ледяного покрова, когда проникания кислорода в воду не происходит, процесс окисления органического вещества почти полностью прекращается. В этот период может происходить лишь намораживание сточной воды.

Биологические пруды рассчитывают обычно по нагрузке на поверхность в зависимости от концентрации загрязнений и температурных условий.

Различают следующие виды биологических прудов: 1) пруды с разбавлением (рыбоводные); 2) пруды без разбавления (многоступенчатые или серийные); 3) пруды для доочистки сточных вод.

В первом случае сточные воды после предварительного осветления в отстойниках смешивают со свежей речной водой в пропорциях 1:3- 1:5 и направляют в одноступенчатые проточные пруды, где идет процесс окисления органического вещества. Нагрузка сточной воды составляет 125-300 м3/(га-сутки). Размер каждого пруда 0,5-7 га. Продолжительность пребывания воды (с учетом разбавления) 8-12 дней. В прудах можно разводить рыбу.

Во втором случае сточные воды после предварительного отстаивания направляют в пруд без разбавления чистой водой. Такие биологические пруды впервые были устроены по инициативе проф. С. Н. Строганова на московских полях фильтрации.

Продолжительность очистки сточной воды в прудах этого типа больше, чем в прудах первого типа; обмен воды происходит за срок до 30 дней. Нагрузка сточной воды примерно такая же, как и в прудах с разбавлением [в Москве 125-150 м3/(га-сутки)].

Строительные и эксплуатационные затраты при устройстве прудов без разбавления значительно меньше, чем при устройстве прудов с разбавлением.

Для того чтобы обеспечить надлежащую очистку воды, пруды без разбавления устраивают в 4-5 ступеней (серийные пруды), которые вода проходит последовательно. Степень чистоты воды с каждой последующей ступенью постепенно повышается. Пруды каждой ступени обычно имеют площадь 2-2,5 га.

Нижние ступени серийных биологических прудов без разбавления могут быть использованы для разведения рыб, главным образом карпа.

При разведении рыб ранней весной в пруд выпускают 500-2000 мальков на 1 га. Прирост рыбы составляет к концу осеннего периода до 500-800 кг на 1 га. Отлов рыбы производится поздней осенью.

Наличие в воде большой массы питательных веществ способствует интенсивному росту водорослей (ряски). Для борьбы с ними желательно разведение на рыбоводных прудах уток, для которых ряска является хорошим кормом.

При устройстве биологических прудов более полно используются земельные участки, чем при сооружении полей орошения или полей фильтрации. Кроме того, пруды могут быть устроены на таких почвах, которые непригодны для полей.

Сточные воды, прошедшие биологические пруды, могут быть использованы для орошения. В этом случае могут применяться поливочные машины, лиманное орошение, длинные борозды, дождевание, подпочвенное орошение.

При необходимости по местным условиям повышенной очистки сточных вод для их доочистки (после искусственных очистных сооружений) рекомендуется устраивать биологические пруды третьего вида. Число ступеней в таких прудах должно быть: при поступлении в них биологически очищенных сточных вод-2-3 ступени, при поступлении отстоен-ных сточных вод - 4-5 ступеней. Нагрузку на пруды следует принимать с учетом их реаэрации, которая дает 6-7 г кислорода на 1 м2 пруда. Этого достаточно, для того чтобы обеспечить очистку 100- 250 м3/(га-сутки) отстоенных сточных вод (без разбавления) или 4000-5000 м3/ (га -сутки) биологически очищенных сточных вод.

Пруды, предназначенные для доочистки сточных вод, могут быть использованы также и для рыборазведения. В этих случаях должно быть предусмотрено устройство дополнительных малых прудов глубиной не менее 2,5 м для пребывания в них рыбы в зимнее время.

В последнее время для очистки сточных вод получают распространение пруды с фотосинтезирующими организмами фитопланктона, в частности с водорослью хлорелла.

Искусственная аэрация позволяет значительно интенсифицировать процессы биохимической очистки сточных вод, увеличить глубину пруда до 3-4 м, что стабилизирует процесс и позволяет сделать биопруды значительно компактнее.

Биологические пруды представляют собой мелкие котлованы глубиной от 0,5-1 м при естественной аэрации и до 3-4,5 м (в зависимости от характеристики аэрирующего устройства) при искусственной. Располагают их на нефильтрующих или слабофильтрующих грунтах.

Как правило, биологические пруды имеют прямоугольную форму и вытянуты по ходу движения воды, при применении самодвижущихся механических аэраторов могут быть круглыми. Соотношение длины к ширине в биологических прудах с естественной аэрацией должно быть 1:15, при искусственной – 1:3. Во избежание образования застойных зон сточную воду в биологические пруды подают рассредоточено.

Направление движения сточной жидкости в биологических прудах должно быть перпендикулярно направлению господствующих ветров.

В пруды для глубокой очистки допускается направлять сточную воду с БПКполн не более 25 мг/л – для прудов с естественной аэрацией и не более 50 мг/л – для прудов с искусственной аэрацией.

По характеру протекающих в биологическом пруду процессов они подразделяются на три основных вида: аэробные, факультативные и анаэробные.

Аэробные биологические пруды содержат кислород по всей глубине воды, которая составляет обычно 0,3 – 0,45 м, что достигается за счет реаэрации и процессов фотосинтеза.

Факультативные биологические пруды, имеющие глубину от 1,2 до 2,5 м, наиболее часто применяются для глубокой очистки сточных вод. Также эти пруды называют аэробно-анаэробными. В верхних слоях развиваются аэробные культуры, в придонных – факультативные аэробы и анаэробы, способные осуществлять процессы метанового брожения.

Насыщение воды кислородом происходит за счет процессов фотосинтеза, осуществляемого водорослями. В прудах также в той или иной мере представлена микро- и макрофауна: простейшие черви, коловратки, насекомые и др.

Анаэробные биологические пруды работают с очень высокими нагрузками по органическим загрязнениям. Основные биохимические процессы, протекающие в них, - образование кислот и метановое брожение.

В последнее время широкое распространение получили биологические пруды с высшей водной растительностью (ВВР). В таких прудах по определенной схеме высаживают такие водные культуры, как камыш, тростник, рогоз, телорез и др. Растения интенсифицируют процесс очистки, удаляют биогенные элементы, активно используя их в своем питании, изымают из воды и аккумулируют тяжелые металлы, радиоактивные изотопы и другие специфические загрязнения. Выделяемые ВВР фитонциды способствуют обеззараживанию воды. Культивирование ВВР предпочтительнее, чем использование для изъятия биогенных элементов и других загрязнений одноклеточных и мелких водорослей. Это объясняется тем, что ВВР очень быстро развивается, следовательно, потребляет большое количество питательных веществ, изымая их из воды. Вместе с тем, ВВР легче удалить из биопруда, чем мелкие водоросли, что предотвращает вторичное загрязнение водоема, обусловленное разложением отмершей растительной биомассы.

В стоке, выходящем после биологических прудов, общее снижение концентрации загрязнений по БПКполн может достигать 60-98%, а по взвешенным веществам 90-98%.

Биологические пруды требуют создания широких санитарно-защитных зон (200 м).

Нитрификация

Особенностью биохимического окисления органических веществ в воде является сопутствующий ему процесс нитри­фикации , искажающий характер потребления кислорода

Нитрификация- процесс биологического превращения восстановленных соединений азота в окисленные неорганические по схеме:

Сутки

3 6 9 12

Рис. 3. Изменение характера потребления кислорода при нитрификации.

Нитрификация протекает под воздействием особых нит­рифицирующих бактерий - Nitrozomonas, Nitrobacter и др. Эти бактерии обеспечивают окисление азотсодержащих соеди­нений, которые обычно присутствуют в загрязненных природ­ных и некоторых сточных водах, и тем самым способствуют превращению азота сначала из аммонийной в нитритную, а за­тем и нитратную формы.

Процесс нитрификации происходит и при инкубации пробы в кислородных склянках. Количество кислорода, по­шедшее на нитрификацию, может в несколько раз превышать количество кислорода, требуемое для биохимического окисле­ния органических углеродсодержащих соединений. Начало нитрификации можно зафиксировать по минимуму на графике суточных приращений БПК за период инкубации. Нитрифика­ция начинается приблизительно на 7-е сутки инкубации (см. рис. 9), поэтому при определении БПК за 10 и более суток необходимо вводить в пробу специальные вещества - инги­биторы, подавляющие жизнедеятельность нитрифицирую­щих бактерий, но не влияющие на обычную микрофлору (т.е. на бактерии - окислители органических соединений). В ка­честве ингибитора применяют тиомочевину (тиокарбамид), который вводят в пробу либо в разбавляющую воду в кон­центрации 0,5 мг/мл.

В то время как, и природные, и хозяйственно-бытовые сточные воды содержат большое количество микроорганизмов, способных развиваться за счет содержащихся в воде органиче­ских веществ, многие виды промышленных сточных вод сте­рильны, или содержат микроорганизмы, которые не способны к аэробной переработке органических веществ. Однако микро­бы можно адаптировать (приспособить) к присутствию различ­ных соединений, в том числе токсичных. Поэтому при анализе таких сточных вод (для них характерно, как правило, повы­шенное содержание органических веществ) обычно применяют разбавление водой, насыщенной кислородом и содержащей добавки адаптированных микроорганизмов. При определении БПК полн промышленных сточных вод предварительная адапта­ция микрофлоры имеет решающее значение для получения правильных результатов анализа, т.к. в состав таких вод часто входят вещества, которые сильно замедляют процесс биохими­ческого окисления, а иногда оказывают токсическое действие на бактериальную микрофлору.

Для исследования различных промышленных сточных вод, которые трудно подвергаются биохимическому окисле­нию, используемый метод может применяться в варианте оп­ределения «полного» БПК (БПК полн.).

Если в пробе очень много органических веществ, к ней добавляют разбавляющую воду. Для достижения максималь­ной точности анализа БПК анализируемая проба или смесь пробы с разбавляющей водой должна содержать такое количе­ство кислорода, чтобы во время инкубационного периода про­изошло снижение его концентрации на 2 мг/л и более, причем остающаяся концентрация кислорода спустя 5 суток инкубации должна составлять не менее 3 мг/л. Если же содержание РК в воде недостаточно, то пробу воды предварительно аэрируют для насыщения кислородом воздуха. Наиболее правильным (точным) считается результат такого определения, при котором израсходовано около 50 % первоначально присутствующего в пробе кислорода.

В поверхностных водах величина БПК 5 колеблется в пределах от 0,5 до 5,0 мг/л; она подвержена сезонным и суточ­ным изменениям, которые, в основном, зависят от изменения температуры и от физиологической и биохимической активно­сти микроорганизмов. Весьма значительны изменения БПК 5 природных водоемов при загрязнении сточными водами.

Норматив на БПК полн. не должен превышать: для водо­емов хозяйственно-питьевого водопользования - 3 мг/л для водоемов культурно-бытового водопользования - 6 мг/л. Со­ответственно можно оценить предельно-допустимые значения БПК 5 для тех же водоемов, равные примерно 2 мг/л и 4 мг/л.

Денитрификация

Денитрификация- микробиологический процесс восстановления окисленных соеди­нений азота (нитратов, нитритов) до газообразных азотистых продуктов (обычно до N 2):

Денитрификация происходит в результате жизнедеятельности бактерий, факультативных анаэробов, ис­пользующих в отсутствие кислорода нитраты и нитриты в качестве окислителей (ана­эробное дыхание). Процесс сопряжен с окислением органических веществ и катализиру­ется особыми ферментами. В ходе денитрификации азот удаляется из почвы и воды в виде газообразного N2, поступающего в атмосферу.

Процесс денитрификации активно протекает во влажных, плохо аэрируемых или зато­пляемых почвах, эвтотрофных водоемах, при рН 7-8, достаточном количестве нитратов и легкодоступного органического вещества. Денитрификацию считают главной причи­ной потерь азота в земледелии - удобрения могут утрачивать в результате денитрифи­кации до 50% связанного азота. Хотя процессы денитрификации осуществляются мик­роорганизмами не с целью получения азота, но именно они «замыкают» круговорот азота в экосистеме, возвращая газообразный N 2 в атмосферу.

Денитрификация - процесс, обратный превращению аммония в нитриты и далее - в нитраты. Разница состоит в том, что нитрификация - процесс окислительный, который протекает в присутствии кислорода. Такие процессы еще называют аэробными. Процесс денитрификации, напротив, является анаэробным, то есть протекает без доступа кислорода. При этом происходит последовательное восстановление нитратов в нитриты, затем в оксид азота, закись азота и, наконец, азот.

В сущности, процесс денитрификации завершает полный цикл круговорота азота в водоеме. Весь азот, который поступил удаляется в атмосферу.

Несложный на первый взгляд процесс в аквариуме может стать совсем непростым и трудно контролируемым. Дело в том, что процесс восстановления протекает при непосредственном участии факультативных анаэробных бактерий Pseudomonas, Micrococcus, Bacillus, Denitrobacillus. В отличие от нитрификации, для успешной реализации которой нужны бактерии Nitrosomonas и Nitrobacter, вода, содержащая аммоний или нитриты, и кислород, денитрификация - достаточно энергоемкий процесс.

Круговорот азота в настоящее время подвергается сильному воздейст­вию со стороны человека. К значительным изменениям в цикле азота приводят процессы:

Массовое производство азот­ных удобрений и их использование приводит к избыточному накоплению нитратов;

Подав­ление деятельности микроорганизмов в результате загрязнения почвы от­ходами промышленности приводит к снижению скорости превращения аммиака в нитраты;

Азот, поступающий на поля в виде удобрений, теряется из-за от­чуждения урожая, выщелачивания и денитрификации, происходит накопление аммонийных удобрений в почве;

В результате промышленной фиксации молекулярного азота из атмосферы с целью производства азотных удобрений резко нарушается природное азотное равновесие.

Однако эти процессы носят локальный характер. Гораздо большее значение имеет поступление оксидов азота в атмосферу при сжигании топлива на ТЭЦ, транспорте, заводах, особенно в промышленных районах. Под воздействием излучения в атмосфере происходят реакции угле­водородов с оксидами азота с образованием высокотоксичных и канцеро­генных соединений.

Заключение

Ещё в городах древнего Египта, Греции и Рима существовали канализационные системы, по которым отходы жизнедеятельности людей и животных транспортировались в водоёмы – реки, озера и моря. В Древнем Риме перед сбросом в Тибр канализационные стоки накапливались и выдерживались в накопительном пруде-отстойнике-клоаке (cloaca maxima). В Средние века этот опыт был в значительной степени забыт, потом, экскременты людей и животных, выливались на городские улицы и удалялись эпизодически. Это являлось причиной загрязнения и заражения источников питьевой воды и приводило к возникновению эпидемий холеры, тифа, амебной дизентерии и др. В начале 19 века в Англии был изобретен туалет с водяным смывом (water closet, WC). Возникла очевидная необходимость в обработке сточных вод и предотвращения их попадания в источники питьевой воды. Сточные воды собирали и выдерживали в больших емкостях, осадок использовали в качестве удобрений. В начале двадцатого века были разработаны интенсивные системы очистки бытовых сточных вод, включая поля орошения, где вода очищалась, фильтруясь через почву, струйные фильтры со щебневой и песчаной загрузкой, а также резервуары с принудительной аэрацией – аэротенки. Последние являются основным узлом современных станций аэробной очистки городских сточных вод.

Преимуществом аэробной очистки является высокая скорость и использование веществ в низких концентрациях. Существенными недостатками, особенно при обработке концентрированных сточных вод, является высокие энергозатраты на аэрацию и проблемы, связанные с обработкой и утилизацией больших количеств избыточного ила. Аэробный процесс используется при очистке бытовых, некоторых промышленных и свиноводческих сточных вод с ХПК не выше 2000. Исключить указанные недостатки аэробных технологий может предварительная анаэробная обработка концентрированных сточных вод методом метанового сбраживания, которая не требует затрат энергии на аэрацию и более того сопряжена с образованием ценного энергоносителя – метана. Преимуществом анаэробного процесса является также относительно незначительное образование микробной биомассы. К недостаткам следует относить невозможность удаления органических загрязнений в низких концентрациях. Для глубокой очистки концентрированных сточных вод анаэробную обработку следует использовать в комбинации с последующей аэробной стадией. Выбор технологии и особенности обработки сточных вод определяется содержанием органических загрязнений в них.

Одной из наиболее актуальных проблем экологии на сегодняшний день является очистка разнообразных сточных вод, загрязненных различными экотоксикантами. Существует ряд путей решения данной проблемы, одним из которых является разработка и внедрение биологических методов очистки и доочистки стоков. Эти методы основываются на практически неограниченной способности живых организмов использовать многообразие веществ, содержащихся в сточных водах, в процессах жизнедеятельности.

Биологической очистке подвергаются стоки, в основном загрязненные веществами органической природы и биогенными элементами, а также характеризующиеся высоким содержанием взвешенных веществ. Биологические методы хорошо себя зарекомендовали в системе очистки коммунально-бытовых стоков, как наиболее экологически и экономически выгодные. Они применяются для очистки сточных вод предприятий молочно-консервной, пищевой, нефтеперерабатывающей промышленности, в животноводстве и т.п.

Аэробная очистка сточных вод

Биологическая переработка отходов опирается на ряд дисциплин: биохимию, генетику, химию, микробиологию, вычислительную технику. Усилия этих дисциплин концентрируются на трех основных направлениях:
- деградация органических и неорганических токсичных отходов;
- возобновление ресурсов для возврата в круговорот веществ углерода, азота, фосфора, азота и серы;
- получение ценных видов органического топлива.

При очистке сточных вод выполняют четыре основные операции:
1. При первичной переработке происходит усреднение и осветление сточных вод от механических примесей (усреднители, песколовки, решетки, отстойники).
2. На втором этапе происходит разрушение растворенных органических веществ при участии аэробных микроорганизмов. Образующийся ил, состоящий главным образом из микробных клеток, либо удаляется, либо перекачивается в реактор. При технологии, использующей активный ил, часть его возвращается в аэрационный тенк.
3. На третьем (необязательном) этапе производится химическое осаждение и разделение азота и фосфора.
4. Для переработки ила, образующегося на первом и втором этапах, обычно используется процесс анаэробного разложения. При этом уменьшается объем осадка и количество патогенов, устраняется запах и образуется ценное органическое топливо - метан.

На практике применяются одноступенчатые и многоступенчатые системы очистки. Одноступенчатая схема очистки сточной воды представлена на рисунке:

Принципиальная схема очистных сооружений:
1 - пескоуловители; 2 - первичные отстойники; 3 - аэротенк; 4 - вторичные отстойники; 5 - биологические пруды; 6 - осветление; 7 - реагентная обработка; 8 - метатенк; АИ - активный ил.

Сточные воды поступают в усреднитель, где происходит интенсивное перемешивание стоков с различным качественным и количественным составом. Перемешивание осуществляется за счет подачи воздуха. В случае необходимости в усреднитель подаются также биогенные элементы в необходимых количествах и аммиачная вода для создания определенного значения рН. Время пребывания в усреднителе составляет обычно несколько часов. При очистке фекальных стоков и отходов нефтепереработки необходимым элементом очистных сооружений является система механической очистки - песколовки и первичные отстойники. В них происходит отделение очищаемой воды от грубых взвесей и нефтепродуктов, образующих пленку на поверхности воды.
Биологическая очистка воды происходит в аэротенках. Аэротенк представляет собой открытое железобетонное сооружение, через которое проходит сточная вода, содержащая органические загрязнения и активный ил. Суспензия ила в сточной воде на протяжении всего времени нахождения в аэротенке подвергается аэрации воздухом. Интенсивная аэрация суспензии активного ила кислородом приводит к восстановлению его способности сорбировать органические примеси.

В основе биологической очистки воды лежит деятельность активного ила (АИ) или биопленки, естественно возникшего биоценоза, формирующегося на каждом конкретном производстве в зависимости от состава сточных вод и выбранного режима очистки. Активный ил представляет собой темно-коричневые хлопья, размером до нескольких сотен микрометров. На 70% он состоит из живых организмов и на 30% - из твердых частиц неорганической природы. Живые организмы вместе с твердым носителем образуют зооглей - симбиоз популяций микроорганизмов, покрытый общей слизистой оболочкой. Микрооганизмы, выделенные из активного ила относятся к различным родам: Actynomyces, Azotobacter, Bacillus, Bacterium, Corynebacterium, Desulfomonas, Pseudomonas, Sarcina и др. Наиболее многочисленны бактерии рода Pseudomonas, о всеядности которых упоминалось ранее. В зависимости от внешней среды, которой в данном случае является сточная вода, та или иная группа бактерий может оказаться преобладающей, а остальные становятся спутниками основной группы.

Анаэробные системы очистки

Как уже упоминалось, избыток активного ила может перерабатываться двумя способами: после высушивания как удобрение или же попадает в систему анаэробной очистки. Такие же способы очистки применяют и при сбраживании высококонцентрированных стоков, содержащих большое количество органических веществ. Процессы брожения осуществляются в специальных аппаратах - метатенках.
Распад органических веществ состоит из трех этапов:
- растворение и гидролиз органических соединений;
- ацидогенез;
- метаногенез.
На первом этапе сложные органические вещества превращаются в масляную, пропионовую и молочную кислоты. На втором этапе эти органические кислоты превращаются в усксусную кислоту, водород, углекислый газ. На третьем этапе метанообразующие бактерии восстанавливают диокись углерода в метан с поглощением водорода. По видовому составу биоценоз метатенков значительно беднее аэробных биоценозов.
Насчитывают около 50 видов микроорганизмов, способных осуществлять первую стадию - стадию кислотообразования. Самые многочисленные среди них - представители бацилл и псевдомонад. Метанообразующие бактерии имеют разнообразную форму: кокки, сарцины и палочки. Этапы анаэробного брожения идут одновременно, а процессы кислотообразования и метанообразования протекают параллельно. Уксуснокислые и метанообразующие микроорганизмы образуют симбиоз, считавшийся ранее одним микроорганизмом под названием Methanobacillus omelianskii.

Процесс метанообразования - источник энергии для этих бактерий, так как метановое брожение представляет собой один из видов анаэробного дыхания, в ходе которого электроны с органических веществ переносятся на углекислый газ, который восстанавливается до метана. В результате жизнедеятельности биоценоза метатенка происходит снижение концентрации органических веществ и образование биогаза, являющегося экологически чистым топливом. Для получения биогаза могут использоваться отходы сельского хозяйства, стоки перерабатывающих предприятий, содержащих сахар, бытовые отходы, сточные воды городов, спиртовых заводов и т.д.
Метатенк представляет собой герметичный ферментер объемом в несколько кубических метров с перемешиванием, который обязательно оборудуется газоотделителями с противопламенными ловушками. Метатенки работают в периодическом режиме загрузки отходов или сточных вод с постоянным отбором биогаза и выгрузкой твердого осадка после завершения процесса. В целом, активное использование метаногенеза при сбраживании органических отходов - один из перспективных путей совместного решения энергетических и экологических проблем, который позволяет агропромышленным комплексам перейти на автономное энергообеспечение.

Биоочистка служит завершающим этапом после механической и физико-химической очистки, после чего воды соответствующего качества спускают в природные водоемы или на рельеф.

Биологические пруды, являясь конечным звеном в процессах биологической очистки стоков, окончательно формируют качество воды, сбрасываемой в водные объекты. Наличие в системе очистных сооружений биопрудов позволяет в значительной мере сгладить отрицательное влияние слабоочищенных стоков на водные бассейны.

Особое внимание необходимо уделять наличию и эффективной работе биологических прудов там, где очистные сооружения работают неудовлетворительно. В первую очередь, это относится к тем предприятиям, где биологические пруды являются практически единственными действующими элементом в системе очистки.

На данный момент в практике очистки хозбытовых и промышленных сточных вод большинство биологических прудов переведены в бессточный режим. Тем самым практически полностью прекратился поверхностный сброс воды в природные водоёмы. Это положительно повлияло на экологическое состояние средних и малых водных бассейнов, значительно замедлив их эвтрофикацию.